Open Access Open Access  Restricted Access Subscription Access

Copyright © 2024 ISEIS. All rights reserved

Uncertainty Quantification in Hydrologic Predictions: A Brief Review

Y. R. Fan1*

  1. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom

*Corresponding author. Tel.: +44 1895265717. E-mail address: (Y. R. Fan).


This study provides a brief review for uncertainty quantification in hydrological predictions. The major approaches for hydrologic predictions are firstly introduced, including the widely used data-driven and process-based modelling approaches. The major uncertainties resulting from inputs, model structures, parameters and outputs are then briefly illustrated. The major review is then conducted for various uncertainty quantification approaches. In detail, the approaches for quantifying uncertainties in model parameters, structures and states are mainly reviewed, such as the Markov chain Monte Carlo, sequential data assimilation and model average approaches. Potential issues to be addressed in future are then concluded, summarizing some unclear issues which may be further investigated in further studies.

Keywords: Hydrologic prediction, uncertainty quantification, Bayesian, Markov chain Monte Carlo, data assimilation

Full Text:


Supplementary Files:


  • There are currently no refbacks.