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ABSTRACT. Dissolved oxygen concentration (DO) is a crucial factor in maintaining aquatic ecosystem health. In this research, two 

data-driven modelling (DDM) techniques, multiple linear regression (MLR) and artificial neural networks (ANN), were developed, 

implemented and compared to predict the DO in the hypolimnetic layer of Seymareh Reservoir in Iran. Low DO in this Reservoir lead 

to a fish kill event and thus, this reservoir is of interest to water managers in the region. Water quality monitoring data from the Reservoir 

and an upstream river were used for training the models. In addition, two input variable selection methods, linear correlation analysis 

and combined neural pathway strength analysis (CNPSA, a nonlinear variable selection method) were developed and compared to deter- 

mine the most significant inputs to predict hypolimnetic DO. A systematic method to select the optimum architecture of the network is 

proposed and tested. While these two approaches have been investigated previously, this research focuses on creating a systematic 

approach to combining two sources of uncertainty of DDM models. Additionally, the performance of CNPSA has not been compared to 

linear variable selection techniques. This research demonstrates the importance of using systematic input selection and network design 

for improved DO prediction in a large Reservoir. The performance of the models was quantified using the Nash-Sutcliffe efficiency and 

root mean squared error, which demonstrated that the ANN approach had better performance compared to the MLR model. The approach 

demonstrates that by using a systematic input variable selection approach combined with an optimised network architecture, a high 

performance of DO prediction can be achieved using easily measured upstream input data. 
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1. Introduction 

Dissolved oxygen concentration (DO) is one of the most 

crucial water quality indicators and it can influence a number 

of processes in lakes and reservoirs, such as nitrification and 

algal growth. Low DO, especially in the deeper layers of reser-

voirs (i.e., the hypolimnion layer), can lead to the release of 

phosphorus, nitrogen, methyl-mercury, hydrogen sulphide, iron, 

and manganese from the bed sediment due to a number of 

anaerobic biogeochemical mechanisms (Bierlein et al., 2017). 

The release of these substances into waterbodies can enhance 

the trophic state of the waterbody leading to additional oxygen 

demand. These interactions pose a major risk to the aquatic 

ecosystem. In addition, the absence or low levels of DO can 

cause fish kills and odour in potable water. For instance, several 

studies, e.g., Burkholder et al. (1999), Lopez et al. (2008), and 

Small et al. (2014), have investigated the reasons of fish kill 

events in reservoirs, and in fact, hypoxia is one of the leading 

causes. More recently, major fish kill events on the coast of 

Nova Scotia, Canada (in 2016) and in the Pampanga River in  
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Masanto, Philippines (in 2017) have both been attributed to hy- 

poxic conditions. 

Given the consequences of low DO on aquatic ecosystems, 

it is not surprising that numerous studies on lakes and reser-

voirs water quality have considered DO as one the most crucial 

indicator of overall water quality. Accurate predictions of both 

short and long-term DO are vital for water resources managers 

and an important decision-making factor (Stefan and Fang, 

1994; Hamilton and Schladow, 1997; Cooke, 2005). Several 

concepts and models have been used to predict DO in lakes and 

reservoirs such as 1, 2 or 3-D physically-based models, as well 

as data-driven models (including simple linear regression, and 

neural networks).The use of these models to predict DO is sum-

marised below. 

The simplest physically-based modelling approach is us-

ing a one-dimensional model such as MIKE-11 and QUAL2K. 

Rucinski et al. (2010) developed a one-dimensional DO model 

in the central basin of Lake Erie (USA-Canada). In this study, 

the model considered simplified biological processes in the 

Lake in order to focus on the effects of vertical stratification 

and mixing dynamics. This model computed daily vertical pro-

files of temperature and DO for the period 1987 ~ 2005. Model 

calibration resulted in good agreement with observations of  

the thermal structure and oxygen concentrations throughout the 
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period of study. The model was calibrated using seasonal oxy- 

gen concentrations by adjusting the water column oxygen de- 

mand, while other factors such as pollutant concentration were 

used to determine DO. However, note that one-dimensional 

models are more appropriate for rivers rather than reservoirs 

because of their weaknesses in simulating the water quality 

along the length of the reservoirs. 

Consequently, two or three-dimensional physically-based 

models have been developed for modelling DO in dams and 

reservoirs, in part to overcome the limitations of the one-di-

mensional approach. A number of relevant studies have been 

done in this field. Brito et al. (2018) simulated the water quality 

(including DO) of Enxoe Reservoir (in Portugal) using a two-

dimensional modelling tool (CE-QUAL-W2) with inputs from 

a watershed model (SWAT). They modelled the trophic level of 

the reservoir and evaluated the efficiency of different mitiga-

tion plans by the modelling tools. The CE-QUAL-W2 model-

ling tool considers property sources and sinks, interactions be-

tween temperature, nutrients, algae, DO, organic matter, and 

sediments for its calculations. In terms of calibration and vali-

dation, up to 50 different parameters were calibrated for the En-

xoe Reservoir; this demonstrates one major drawback of phys-

ical-based models, namely, the complexity and difficulty in cal-

ibration when a large number of parameters are considered. The 

modelling results showed that the model tended to underesti-

mate DO near the bottom during the summer months.  

Additionally, Trolle et al. (2014) undertook a three-dimen-

sional water quality model to examine the impacts of agricul-

tural intensification in the watershed of Lake Benmore (in New 

Zealand). A large amount of information was required as inputs 

of the modelling, including daily inflow and outflow, water 

temperature, DO, and nutrient concentrations in inflows, and 

hourly or daily meteorological data (air temperature, shortwave 

radiation, relative humidity, wind speed, wind direction, and 

rainfall). Similarly, Bocaniov et al. (2017) examined the tem-

poral and spatial hypoxia development (especially in the hypo-

limnetic layer) and its response to the nutrient load in Lake Erie 

(USA-Canada) using a three-dimensional lake model. The 

modelling tool was aimed to simulate water and sediment 

chemical and biological processes. To summarise, given the 

complex physical systems that govern DO in reservoirs and 

lakes, two- and three-dimensional physically-based models are 

necessary. However, these types of models are increasingly 

complex (to account for interactive effects between air, water 

and sediment), hard to calibrate (which may introduce addi-

tional uncertainties in the model), and require a large amount 

of site specific data (which are not easily available). Thus, an 

alternative option is to use data-driven models. In these models, 

a mathematical structure is developed that is capable of provid-

ing the linear or non-linear relationship between inputs and out-

puts. The data driven approach concentrates on forming a sys-

tem that can develop the answer based on what has been seen 

before. 

Data-driven models (DDMs) and machine learning meth-

ods have recently gained wide interest in modelling DO, in part 

due to reduce the uncertainty present in physically-based mod-

els. These techniques try to predict the water quality parameters 

(e.g., DO) based on the temporal and spatial relationship of ob-

served water quality dataset without the explicit knowledge of 

the underlying physical system (Solomatine and Ostfeld, 2008). 

DDM includes different categories of statistical and artificial 

intelligent models such as artificial neural networks (ANNs), 

fuzzy-based systems, and multiple linear regression (MLR) 

(Khadr and Elshemy, 2017). 

Regression models have been used in a wide array of ap-

plications including econometrics, finance, sociology, hydrol-

ogy, biology, psychology, pharmacology, and engineering stud-

ies. This method develops relationships between the dependent 

variable (e.g., a water quality parameter like DO) and selected 

independent variables by fitting a linear equation to the ob-

served data set. However, ANNs are an alternative type of 

DDM; they are well suited for many environmental or hydro-

logical applications because of their informative processing 

characteristics, such as nonlinearity, parallelism, noise toler-

ance, and learning and generalization capabilities (Liu and 

Chung, 2014). In recent years, several research studies have 

been conducted on water quality simulation using these tech-

niques. Basant et al. (2010) simulated DO and BOD5 in the 

Gomti River (India) by the application of partial least squares 

regression and feed forward back propagation ANN using a set 

of independent measured variables (specifically pH, TSS, alka-

linity, hardness, Cl-, PO4
3-, K+, Na+, NH4

+-N, NO3
--N and 

COD). The performance of these models were assessed by dif-

ferent criteria such as root mean squared error (RMSE), the 

standard error of prediction (SEP), the coefficient of determi-

nation (R), the Nash-Sutcliffe efficiency (R2), and the accuracy 

factor (Af). The results illustrated that the nonlinear model 

(ANN) performed better than the linear one. 

He et al. (2011) analysed different factors that contribute 

to DO levels in a wastewater-impacted river in Calgary, Canada 

using statistical data analysis and modelling. The results illus-

trated that both climatic conditions (reflected in water temper-

ature) and hydrometric conditions (flow) were major factors 

that influence DO in the Bow River. In their study, the non-

linear approach using multiple-layer perceptron neural net-

work, showed a better performance compared to the MLR ap-

proach. Khan and Valeo (2015, 2016, and 2017) proposed new 

methods for DO prediction in the same river in Calgary using 

both MLR and ANN techniques by accounting for uncertainty 

by using fuzzy numbers. The methods further demonstrated the 

ability of DDMs to predict DO in complex, urbanised water-

sheds, and had the ability to predict the risk of low DO events 

as well.  

Heddam and Kisi (2018) implemented three types of arti-

ficial intelligence techniques, least square support vector ma-

chine, multivariate adaptive regression splines, and M5 Model 

Tree in order to predict the concentration of DO in different 

stations in different rivers in the USA. Three indices including 

R, RMSE and mean absolute error (MAE) were used to assess 

and evaluate the model performance. The results of this study 

also showed that these DDM techniques have the capacity to 

predict DO, although the best model differs for one station to 

another, and are also a function of which data is available.  

These studies highlight the utility and need for DDMs for 
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water quality prediction, particularly, for DO in complex sys-

tems where physically-based models may not be appropriate. 

However, in most of these studies, an ad hoc or trial and error 

approach is used design the DDMs. In particular, a consistent 

method to select the inputs (i.e. the independent variables) is 

needed to develop the best performing models. Additionally, 

the structure of the DDMs (i.e. the number of input parameters 

or model coefficients) are not explored.  

Input variable selection (IVS) is a key factor in DDM de-

velopment. Most studies use linear correlation analysis to de-

termine the best input variable. While this can be a robust way 

to select inputs for MLR, however, it is not a suitable approach 

for ANN or other non-linear models. The major disadvantage 

is that it is unable to account any nonlinear dependence that 

may exist between the input and the output datasets, and may 

possibly result in the elimination of important input parameters 

that have a nonlinear relationship with the output variable. 

There are several methods to conduct IVS for ANNs. He et al. 

(2011) investigated the contribution of different factors in the 

level of daily minimum DO using MLR and ANN. For MLR, 

the candidate input variables were determined according to the 

partial correlation between input and output, while for the ANN 

model performance was generally improved by adding more 

independent variables as compared to MLR. Valeo and He 

(2009) used an ANN and fuzzy logic based method to obtain 

quantile estimates for rainfall prediction. This study compared 

conventional parametric methods and found that conventional 

models require the selection of the underlying distribution of 

the process while ANNs do not require a priori identification of 

a suitable distribution. The results showed the better perfor-

mances of ANN modelling techniques. More recently, Khan et 

al. (2018) tested the combined neural pathway strength analysis 

(CNPSA) method for input selection process for urban flood 

prediction. This process measured the relative strength of an 

input and the output of an ANN to determine those inputs that 

have the highest impact in predicting the output. These are two 

of several methods that can be used for IVS for ANN or other 

DDM; a detailed review can be found in Quilty et al. (2016). 

Most DDM approaches for modelling DO or other hydrological 

variables do not include a systematic IVS approach. However, 

recent studies have understood and demonstrated the im-

portance of this crucial step. In addition to IVS, the structure of 

DDMs needs to be designed accurately. In fact, an inappropri-

ate structure of a DDM may cause the model to overfit the train-

ing data and reduce the ability of the model to generalize. 

With respect to all the gaps and limitations of the previous 

studies, in this research, the application of two DDM methods 

(namely, MLR and ANN) with a systematic IVS approach and 

an accurate design of the model structure is explored. Data 

from the Seymareh Reservoir in western Iran is used to demon-

strate the proposed modelling approach. The Reservoir was pri-

marily built for hydropower generation and as a flood control 

facility. In 2012, the low DO in the water caused a fish kill 

event in the reservoir, which was considered an environmental 

disaster. Thus, local water resources managers were interested 

in developing an accurate method to estimate DO to better un-

derstand the conditions leading to low DO, to predict future low 

DO events, and to evaluate various mitigation plans to help im-

proved DO levels. Therefore, the main objective of this study 

is to develop two data-driven methods (MLR and ANN) to sim-

ulate the DO level in the hypolimnetic layer of the Seymareh 

Reservoir in Iran. Two IVS methods were explored and com-

pared to design the data-driven models: linear correlation 

method is used to select the inputs for the MLR model, and the 

CNPSA IVS method is used to select the inputs for the ANN 

model. The proposed models will allow reservoir and dam op-

erators and water resource managers to predict DO in the 

deeper layers of reservoirs using upstream river water quality 

parameters. The significance of using upstream river water 

quality data is that it allows the prediction of DO in the deeper 

hypolimnetic layer of the Reservoir without needing to collect 

data from this difficult to access and measure location. While 

this research shows results from one study area, the proposed 

approach is generalizable to other regions. The innovation of 

this research is a systematic IVS and network architectural op-

timisation technique of ANN models. This analysis can help 

better understand the physio-chemical mechanisms that affect 

hypolimnetic DO in reservoirs, leading to more accurate pre-

dictions of DO, and thus preventing detrimental impacts to wa-

ter bodies. 

2. Methods 

2.1. Study Area 

The Seymareh Reservoir (Figure 1) has a total watershed 

area of 27,000 km2 and an effective storage about 2500 × 106 

m3 at normal elevation. In 2012, low DO resulted in a fish kill 

event in the Reservoir. The main reason for the low DO in the 

upper layer of the reservoir was the considerable anaerobic 

zone in the hypolimnion (deepest) layer that affected the entire 

waterbody, which in turn lowered the DO. 

 

 
 

Figure 1. The seymareh reservoir and upstream watershed (the 

location of the reservoir within the larger area is shown in the 

inset). 

 

Due to this event, a water quality monitoring program was 

initiated in 2013 for a one-year period as a part of a water 

quality management project under the supervision of Ministry 
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Table 1. A Statistical Summary of the Water Quality Variables in the Seymareh Reservoir and Upstream Inflow (n = 34 samples) 

 Reservoir Inflow 

Variable Min Mean Max Min Mean Max 

Water temperature (°C) 11 18.3 28.5 7.2 18.4 29 

pH 6.9 7.6 8.7 7.5 7.8 8.3 

Electrical Conductivity 

 (µmohs/cm) 
532 784 1270 491 761 1180 

COD (mg/L) 8.1 20.5 39.3 17.8 22.2 28.5 

DO (mg/L) 0.7 6.6 11.7 7.3 9.9 13.6 

Total Nitrogen (mg/L) 0.9 2.3 4.6 1 2.95 5.1 

Total Phosphorus (mg/L) 0.07 0.2 0.46 0.11 0.29 0.51 

 

of Energy in Iran by Mahab Ghodss’ laboratory. There were 

two water quality sampling stations that collected data three 

times per month (except in December when only one sample 

was collected, resulting in 34 samples for the year). One station 

was located on at the upstream river just before the entrance of 

the Reservoir and the second station was located in the main 

Reservoir itself near the dam body (Figure 1). The distance 

between these two stations was about 40 km. In addition to the 

water quality parameters (see Table 1 for a complete list of 

parameters); other parameters related to the Reservoir such as 

wind speed (W), Secchi disk (Sd) and water depth (D) were 

also measured. A Horiba Portable U-10 Water Quality sampler 

was used to measure in-situ Electric Conductivity (EC), water 

temperature (T), pH, and Dissolved Oxygen (DO). Manual 

(grab) samples were collected from the upstream and down- 

stream location to measure 5-day Biochemical Oxygen Demand 

(BOD5) and Carbonaceous Oxygen Demand (COD), Total 

Phosphorus (TP), and Total Nitrogen (TN) using Standard 

Methods. To collect samples from the hypolimnetic layer, a 

custom-made vertical point water sampler was used. All manu- 

al samples were transferred to an analytical water quality labo- 

ratory in Tehran within 24 hours for analysis.  

Both the water quality data and the additional physical 

parameters were considered as candidate inputs for the two 

DDMs in this research. Table 1 summarises the descriptive sta- 

tistics of this sampling program. On average, the table summa- 

rises the spatial distribution of the parameters, highlighting that 

the concentrations of TP, TN, DO, COD, and pH are lower 

within the reservoir as compared to the upstream – in particular 

DO, which reduced from 9.9 mg/L to 6.6 mg/L. On the other 

hand, EC had a slightly higher value in the reservoir compared 

to the upstream location, whereas the water temperature was 

essentially constant. From a temporal perspective, the concen- 

trations of water quality were generally higher (with the excep- 

tion of DO) in the summer months (which is the dry period in 

the study region) due to lower inflows and constant point 

source pollution from upstream municipal and industrial waste- 

water sources. Winter concentrations were lower due to higher 

inflows into the reservoir. For the DO, the minimum, mean, and 

maximum values for the Reservoir are 0.7, 6.6, and 11.7 mg/L, 

respectively. Note that the minimum amount is well-below the 

water quality guidelines for the protection of aquatic habitat 

which is 5 mg/L based on the Iranian Department of Environ- 

ment Standards.  

All the data presented in Table 1 was used to predict DO 

using either the MLR or ANN approach, following the system- 

atic IVS approaches described below. Previous studies have 

identified that a key step in selecting inputs for these types of 

model is to normalise the inputs (Khan et al., 2018, Saghi et al., 

2015). Therefore, the inputs and target amounts were nor- 

malised using the following equation (Equation (1)): 
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 (1) 

 

where X is the data value, Xn is the normalized data value, Xmax 

and Xmin are the maximum and minimum values of all data and 

Ymax and Ymin are maximum and minimum values in the range 

of (0, 1). 

 

2.2. Model Performance Metrics 

For this research, two common model performance met- 

rics were used to measure and compare model performance: the 

RMSE and the Nash-Sutcliffe efficiency (R2). These metrics 

were calculated using the following equations: 

 

21
[ ]p mCR

N
MS CE    (2) 

 

2

2

2

( )
1

( )

p m

m m

C C
R

C C


 


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where N is the total number of data points, Cp is a simulated 

water quality variable, Cm is a measured water quality variable, 

and Cm denote the average of measured water quality variables. 

 

2.3. Multiple Linear Regression 

The general form of multiple linear regression models is: 

 

0 1 1 2 2 k kx x x ry         (4) 

 

where β0 is the intercept, β1 is the parameter associated with x1, 

β2 is the parameter associated with x2 and the variable r is the 

residual. The MLR model is trained by minimizing the sum of 
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the squares of the residuals between the predicted and the 

observed data (Kovdienko et al., 2010; Ferraro and Giordani, 

2012). Of the 34 samples, 80% (27 samples) and 20% (7 sam- 

ples) of the input data were used for training and testing (i.e. 

independent dataset) the regression model, respectively. The 

selection of an appropriate set of input variables for DDMs is a 

very important step and has been identified as the major source 

of uncertainty in DDM implementation (Khan and Valeo, 

2017). It is difficult to determine how many and which input 

variables (from the full dataset shown in Table 1) should be 

used in the model. A common approach to select the appro- 

priate inputs for MLR is to determine the correlation coefficient 

(R) between the candidate input variables (x) and DO (y) in the 

hypolimnion layer based (using Equation (5)). The higher the 

value of R the better candidate that particular variable is as an 

input: 

 

 
2 2 2 2

( )( )

( ) ( )
R

x

n xy x y

n x n y y



       


  

   
 (5) 

 
where x and y represent the input variables and hypolimnion 

DO respectively. In addition, there are several assumptions 

related to the MLR models that need to be met for the model to 

be applicable. Typically, after a regression analysis has been 

conducted, an analysis of residuals must be conducted to ensure 

that these assumptions of the model have not been violated. In 

this study, it has assumed that the measurement of DO was error 

free. The four principal assumptions of linear regression are 

(Khan and Valeo, 2016): 

(i) the mean of residuals r is zero, E(r) = 0; 

(ii) the residuals, r, have a constant variance with respect 

to time, i.e. the data is homoscedastic Var(r) = σ2;  

(iii) the residuals, r, are independent or uncorrelated; and  

(iv) the residuals, r, are normally distributed, r ~ N (0, σ2). 

For the third assumption, the Durbin-Watson statistic test 

(Durbin and Watson, 1951) can be used to determine whether 

or not the residuals are independent. In this test, the test statis- 

tic, d (see Equation (6)) is calculated using the residual r. The 

value of d lies between 0 and 4; if d ≥ 2, it indicates no auto- 

correlation, and if d is substantially less than 2, there is evi- 

dence of positive serial correlation. In regression, this can im- 

ply an underestimation of the level of statistical significance: 
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2.4. Artificial Neural Network and CNPSA 

In addition to the MLR approach, a multilayer perception, 

feed-forward ANN model was developed to predict the hypo- 

limnetic DO in the Seymareh Reservoir. In this case, 70% (24 

samples), 15% (5 samples) and 15% (5 samples) of the input 

data were used for the training, validating and testing phases, 

respectively. Feed forward neural networks propagate data 

from input to output and they are the most popular and widely 

used ANN models. These models are often made of one input 

layer, one or more hidden layers, and an output layer. The 

general formula for the data transfer from the input layer to the 

output layer is defined by Equation (7): 

 

1

Z

i ij j

j

Y W X b


   (7) 

 

where Z is the number of neurons in the last layer, i is the 

number of outputs, Xj (j = 1, Z) are the input data from neurons 

in the last layer for i-th output, Wij (j = 1: Z) are the weights of 

Xj neurons and b is the bias. The main differences between the 

various types of ANNs include: the number of hidden layer 

number; the number of neurons in each layer; the activation 

function used in each neuron and the training methods used 

(e.g., the commonly used back-propagation Levenberg-Mar- 

quadt method) (Saghi et al., 2015). 

As mentioned above, different input combinations can 

change the performance of the ANN models. Therefore, an IVS 

method should be considered to identify the most effective 

input parameters and the best combinations of inputs to predict 

DO in the Reservoir. One approach to do this is to use the rela- 

tively recently developed Combined Neural Pathway Strength 

Analysis (CNPSA) method (Duncan, 2014; Khan et al., 2018). 

The CNPSA can calculate the most significant input parameters 

by calculating the relative strength of a particular pathway from 

each input to the output within the ANN. The strength is calcu- 

lated using the magnitude of the weights (i.e., the tuning para- 

meters) of the ANN as shown in Equation (8): 

 

IO IH HOW W W g  (8) 

 
where W1H is representing the weights between the inputs, and 

hidden layer, and also WHO are the weights between the hidden 

layer and output later. The greater the value of WIO the better 

input variable in predicting the output using the ANN. For the 

modelling of hypolimnetic DO in Seymareh Reservoir, first, 

the significance of each input is calculated, the WIO are col- 

lected and used to calculate the ensemble interquartile range 

(EQR) for each of the inputs as based on Eqation (9): 

 

 
 

 
1 3

1 3

1 3

,
( )

,

Q Q
EQR sign Q sign Q

max Q Q
  (9) 

  

where Q1 and Q3 are the first and third quartile of the WIO. 

Determining the optimum number of nodes in the hidden 

layer and the transfer functions are also an important com- 

ponent of the design and architecture of an ANN model. An 

excessively large number of nodes (and hence weights and 

biases) may result in overfitting, while an insufficient number 

of nodes may not capture the information adequately (e.g. 

Dawson and Wilby, 2001; Singh et al., 2009; Ranković et al., 

2010). Furthermore, the number of neurons in the hidden layer 



A. K. Nokhandan et al. / Journal of Environmental Informatics Letters 2(2) 70-81 (2019) 

 

75 

can affect the strength of every input and as a result in this 

research different numbers of neurons in the hidden layer 

(specifically 3, 6, 9, 12, 15 and 18 neurons) were examined in 

order to implement the CNPSA. After determining the most 

effective input variables, the best network architecture for 

ANN model was obtained based on the R2 and RMSE values 

from the testing dataset. 

 

2.5. Hypothesis Testing for Model Comparison 

In this research, five hypothesis tests including the t-test 

(Kalpić et al, 2011), the rank-sum test, Signed-rank test (Wilco- 

xon, 1945), the KS-test (Newman, 1939), and the F-test (Sne- 

decor and Cochran, 1989) were used to determine whether 

there was a statistically significant difference between the 

modeled output and observed DO, as well as to compared the 

two models. The 5% significance level was used to determine 

if the results were significantly different or not. All model 

development and hypothesis tests were performed using 

MATLAB (2017a). 

3. Results and Discussion 

3.1. Multiple Linear Regression Model 

The correlation coefficient was calculated for the DO in 

the hypolimnetic layer of the reservoir and all input variables 

(including the water quality parameter in the river, and the 

physical reservoir characteristics). A summary of these calcula- 

tions is listed in Table 2 which demonstrate that five most 

effective input are EC, TP, T, DO, and W (all with an R2 value 

greater than 0.3). Note that the other parameters such as BOD5, 

TN, Sd, and D, did not show a sizable correlation with the hy- 

polimnetic DO and were thus, eliminated from further consid- 

eration. The low R2 values indicate the lack of a linear relation- 

ship between any single variable and the DO in the hypolimne- 

tic layer. 

Also, with respect to the value of R2 between these five 

important parameters: TP, DO and W are directly correlated 

while EC and T are inversely related. For DO and W it is 

obvious that by increasing the DO at the upstream river and 

also by having more wind speed, it is expected to correspond 

to higher levels of DO in the hypolimnion layer. An increase in 

TP concentration usually happens at the beginning of the wet 

season with an increase in precipitation. At the same time, the 

thermal stratification of the reservoir starts to change, and 

mixing of the water body begins which is an important event 

for increasing the DO level of the whole water body (including 

the hypolimnion layer) and as a result, the increase in the 

hypolimnetic DO and TP occur at the same time. On the other 

hand, EC usually increases during the dry seasons when con- 

taminant concentration is higher owing to lower water vol- 

umes. Also, hypoxic conditions and low DO in the deeper 

layers of the Reservoir usually occur in the summer. Thus, 

lower hypolimnetic DO levels are observed when T and EC are 

both higher. 

Following this, several MLR models were constructed to 

examine the efficiency of different input combination in esti- 

mating the output. Each model has a different combination of 

input variables (that were short-listed as candidate inputs using 

the correlation coefficient). These models were compared us- 

ing the two model performance criteria (R2 and RMSE) and are 

summarised in Table 3.  

 

Table 2. The Correlation Coefficient between Candidate Input 

Variables and Hypolimnetic DO 

Input variables R 

T -0.597 

DO 0.566 

BOD5 -0.0155 

EC -0.902 

TN 0.164 

TP 0.722 

D -0.166 

SD 0.091 

W 0.629 

 

Table 3. The Performance of MLR Modelling with Different 

Input Combinations 

Input parameters R2 RMSE 

T, DO, EC, TP, W 0.857 0.90 

T, DO, TP, W 0.741 0.94 

T, DO, EC, W 0.845 0.90 

T, DO, EC, TP 0.821 0.91 

DO, EC, TP, W 0.845 0.90 

T, EC, TP, W 0.857 0.89 

EC, TP, W 0.839 0.90 

EC, TP 0.814 0.91 

EC, W 0.837 0.90 

EC 0.814 0.91 

 

Based on the results presented in the Table 3, the best 

performance of the MLR model was achieved when T, EC, TP, 

and W were used as the input variables. The regression equa- 

tion for this model was found as follows: 

 

· ¶ ¶

¶ µ

0.2239 0.6632 0.2594

0.5125 0.4160

Hypolimnetic DO EC TP

W T

  

 
 (10) 

 

Figure 5a compares the observed DO and the predicted 

DO using this MLR model. The R2 value for the entire dataset 

was 0.857, while the RMSE was 0.9 mg/L which is quite low 

(less than 15%) comparing the average amount of DO in the 

reservoir (6.6 mg/L) and shows a good performance of model- 

ling procedure. The reason for having a direct relationship 

between T and Hypolimnetic DO in this equation might be the 

correlation between T and the other independent variables 

which is one the weaknesses of using an MLR approach. 

In order to use the proposed MLR model, it is necessary 

to test and verify that the proposed equation (Equation (10)) 

satisfies the linear regression assumptions. The results of 

checking the assumptions are presented in Figure 3. The 

residuals were confirmed to follow the normal distribution  
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Figure 2. Checking MLR assumptions of (a) correlation of residuals and (b) homoscedasticity. 

 

 
 

Figure 3. The EQR values for different input parameters. 

 

using the Jarque-Bera test. The autocorrelation assumption 

(illustrated in Figure 2a), was tested using the Durbin-Watson 

test statistic d which was equal to 0.8, suggesting that the resi- 

duals are autocorrelated. The assumption of constant variance 

(homoscedasticity) was not violated (as shown in Figure 2b). 

Finally, the mean of residuals was calculated to be equal to 

zero. Therefore, regarding the violation of one of the assump- 

tion which implies an underestimation of the level of statistical 

significance and existence of a correlation between the input 

variables hence, implying that the MLR estimators are not 

unbiased. 

 

3.2. Artificial Neural Network (ANN) Model 

Similar to the MLR approach, as a first step for the ANN 

model, CNPSA was used for IVS to identify the most effective 

input combination to predict the hypolimnetic DO model. 

Figure 3 illustrates the results of CNPSA for different inputs 

under several different Number of Neurons (NoN, which were 

varied from 3 to 18). Based on this analysis, the most important 

input parameters were identified as EC, T and TP, since these 

inputs have a positive EQR value for all NoN cases considered.  

Thus, these three variables were selected as the final inputs 

for the ANN model. Note that this selection is similar to the 

IVS selection for the MLR (using R) model but excludes wind 

speed (W). Note that W had negative EQR for the ANN models 

with a NoN of 9 and higher. 

Following the CNPSA and EQR analyses for IVS the 

performance of the model for each NoN configuration was 

examined, and these results are illustrated in Figure 4. The 

figure shows that generally for each configuration the values of 

the two metrics, R2 and RMSE, suggested good performance 

for each model. No obvious trends are apparent with decreasing  
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Figure 4. The performances of the model in each phase (training, validating and testing) under different numbers of neurons in the 

hidden layer. 

 

 
 

 
 

Figure 5. Predicted and measured hypolimnetic DO in the Seymareh Reservoir under different modelling methods (a) MLR and 

(b) ANN. 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

18 15 13 9 6 3

Number of Neurons

R
M

S
E

R
^2

R2 training R2 validating R2 testing

RMSE training RMSE validating RMSE testing

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34

H
y
p

o
lim

n
e

ti
c
 D

O
 (

m
g

/L
)

Temporal samples 

MLR results

Observed DO

(a)

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19 22 25 28 31 34

H
y
p

o
lim

n
e

ti
c
 D

O
 (

m
g

/L
)

Temporal samples 

ANN results

Observed DO

(b)



A. K. Nokhandan et al. / Journal of Environmental Informatics Letters 2(2) 70-81 (2019) 

78 

 

NoN, nor in comparing the testing dataset values to the training 

and validation datasets. Considering the high values of R2 and 

lower values of RMSE, the model with six NoN was selected 

as the final architecture and ANN configuration for this re- 

search. 

To confirm the effectiveness of the CNPSA and EQR 

approach, the six NoN ANN model was retrained using differ- 

ent combinations of inputs from the short-listed candidates (EC, 

TP, and T) are the results of this are summarised in Table 4. The 

data in the table shows that the best performing model is clearly 

the model that uses all three inputs identified by the CNPSA 

and has an R2 of 0.994 and RMSE of 0.21 mg/L. Note that for 

this analysis, each ANN was trained a 100 times to account for 

the randomness in training ANN caused by the random-start 

procedure of the training algorithm as well as to account for the 

limited size of the dataset used. The perfor- mance metrics are 

averaged over the 100 iterations. 

 

Table 4. The Performance of ANN Modelling with Different 

Input Combinations 

Combination No.  Input parameters R2 RMSE 

1 EC, TP, T 0.994 0.21 

2 EC, T 0.986 0.3 

3 EC, TP 0.925 0.68 

4 T, TP 0.941 0.61 

5 EC 0.884 0.83 

6 T 0.679 1.42 

7 TP 0.819 1.06 

 

Figure 5b shows the trend plot of the predicted DO using 

the final ANN model. Note that the grey shaded area represents 

the results from the 100 repeated training results (effectively 

providing upper and lower bounds of the predictions at each 

point). The figure shows that the ANN model can follow the 

trend of the observed DO closely (as shown by the high per- 

formance metrics) and can capture the DO values within its 

bounds.  

Note that in many cases, TP measurements cannot be con- 

ducted remotely or continuously (i.e., it requires a laboratory 

analysis rather than a sensor). Thus, an alternative approach 

may be to select the model that only uses EC and T to predict 

DO, both of which are relatively simple to measure online and 

continuously. Even this approach, with one less input, provides 

a higher performance ANN model with an R2 of 0.986 and 

RMSE of 0.3 mg/L (as shown in Table 4 above). It should be 

noted that by eliminating TP from the inputs, the performance 

of the models decreases slightly but generally is still high. Thus, 

by applying this IVS method, an accurate estimate of hypolim- 

netic DO can be achieved by only using upstream EC and T in 

the upstream river location as inputs to the model. 

 

3.3. Comparison of the Two DDMs 

For the MLR and the ANN models, the R2 values were 

0.857 and 0.994, respectively, and the RMSE were 0.89 mg/L 

and 0.21 mg/L, respectively. Thus, the ANN model demon- 

strates better performance using both performance criteria. 

Note that the MLR model does fail under one assumption, as 

identified above meaning that the resultant predictions are 

biased. A comparison of the predictions from both models are 

illustrated in Figure 6. The figure shows that the ANN model 

predictions fall closer to the 1:1 line than the MLR, indicating 

a better fit (and quantified using R2, earlier). Also, note that the 

ANN model has fewer outliers, and generally predicts lower 

DO (a focus of this research) better than the MLR approach. 

The primary reason for this difference in performance is the 

ability of ANN to consider the non-linear and synergistic re- 

lationships between the input variables and DO, which the 

MLR approach cannot account for. The results of Table 2 to 

Table 4 reflect the sensitivity analysis of different parameters 

considering different DDMs. The results in Table 2 showed that 

there is not a significant linear relationship between T and 

hypolimnetic DO, meaning that the MLR is unable to account 

for the impacts of T on the hypolimnetic DO leading to lower 

model performance. This is confirmed looking at the results in 

Table 4 that show the ANN model performance increases sub- 

stantially when T is added as an input variable (i.e. Combina- 

tion No. 2 and 5), with the R2 increasing from 0.884 to 0.986. 

In other words, the non-linear relationship is captured by the 

ANN model but not the MLR model. Table 2 also demonstrates 

that EC has the highest linear correlation with hypolimnetic DO: 

using EC as the sole input to both models produce reasonable 

results with R2 values of 0.814 and 0.884 for the MLR and 

ANN models, respectively. However, as discussed above, the 

ANN model performance increases to R2 = 0.986 once T is also 

included as an input in the ANN (which was not selected as a 

candidate input for the MLR model). Similarly, TP has a high 

linear correlation with DO (as seen in Table 2); when com- 

paring the MLR and ANN models that use both EC and TP as 

inputs, the ANN model performance is higher (R2 = 0.925_ than 

the MLR model (R2 = 0.814). This demonstrates that the ANN 

model is better able to replicate the physio-chemical processes 

that govern DO concentration as compared to the ANN – im- 

portant input variables such as T, TP and EC result in better 

performing ANN models, whereas the same inputs have lower 

performance in the MLR models. The ability of ANNs to model 

both the non-linear and synergistic effects of the inputs is the 

primary reason for this phenomenon. 

In addition to comparing the model performance metrics 

for each method, five different hypothesis tests were conducted 

to examine the statistical significance of the difference between 

the two models and the observed data. Based on the results of 

these tests (as shown in Table 5), the null hypothesis has not 

been rejected and therefore, no statistically significant differ- 

ence was found between the predict DO using each method, 

and between the predictions and the observations. This high- 

lights that both models were able to capture the overall trends 

seen in the observation closely (i.e. no significant difference), 

and highlights that the models themselves were not very dif- 

ferent between each other (though one underlying assumption 

for MLR was not met). However, as mentioned above the ANN 

model had better performance overall, and was better able to 

predict the low DO observations seen in the reservoir. 
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Table 5. Comparing the Results of Simulation by ANN and MLR by Different Hypothesis Tests 

Hypothesis test Comparing MLR results and 

Observed DO 

Comparing ANN results and 

Observed DO 

Comparing ANN results and MLR 

results 

t-test h* = 0 

p-value = 0.95 

h = 0 

p-value = 0.94 

h = 0 

p-value = 0.99 

Rank-sum test h = 0 

p-value = 1 

h = 0 

p-value = 0.97 

h = 0 

p-value = 0.99 

Signed-rank test h = 0 

p-value = 0.38 

h = 0 

p-value = 1 

h = 0 

p-value = 0.38 

KS-test h = 0 

p-value = 0.83 

h = 0 

p-value = 1 

h = 0 

p-value = 0.83 

F-test h = 0 

p-valu e= 0.87 

h = 0 

p-value = 0.91 

h = 0 

p-value = 0.96 

*h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a failure to reject the null hypothesis at the 5% significance level. 

 

Overall, as the results of the research demonstrate that the 

ANN model can better predict low hypolimnetic DO concen- 

tration in the study area. However, an important feature of the 

proposed approach is that the final configuration of the model 

uses input variables that are relatively easy and inexpensive to 

measure in-situ using a multi-parameter water quality sonde 

(i.e., these input variables do not require laboratory analysis). 

This suggests that by using the proposed approach, upstream 

water quality measurements can predict downstream DO in 

real-time, allowing water resource managers to take precau- 

tions to improve water quality as needed. In particular, this 

approach can help eliminate the need for a more comprehensive 

monitoring program to measure hypolimnetic DO (which is 

comparatively harder to sample). 

 

 
 

Figure 6. The results of the ANN and MLR models versus the 

observed data. 

4. Conclusions 

The level of hypolimnetic DO in large reservoirs has a key 

effect on the other water quality parameters such as phosphorus, 

ammonia and hydrogen sulphide and as a result, and it is con- 

sidered an important parameter in water quality monitoring net- 

works for dams and reservoirs. Measurement of this indicator 

variable is not simple and thus, the use of numerical models to 

predict this variable under different conditions is extremely im- 

portant. Thus, in this research, two DO models (MLR and ANN) 

were successfully developed for the Seymareh Reservoir, Iran, 

where low DO is a concern.  

As part of the model calibration procedure, a systematic 

IVS method was implemented to determine the most effective 

input parameters for each modelling approach (a significant 

component of DDM design that is not widely researched). In 

this step, less important factors were eliminated from the analy- 

sis resulting in more efficient numerical models. The MLR ap- 

proach used a correlation based IVS technique, whilst the ANN 

approach used an ANN-based IVS technique (the CNPSA me- 

thod) that has not been compared to its linear counterparts in 

the literature.  

The hypolimnetic DO in the Seymareh Reservoir were 

predicted using each method and the performances of the mod- 

els were quantified using R2 and RMSE. This analysis demon- 

strated that the ANN method performed better than the MLR 

method. The R2 and RMSE for MLR model were 0.857 and 

0.89 mg/L respectively, whilst for the ANN model the values 

were 0.994 and 0.21 mg/L. Hypothesis tests were used to con- 

firm that there was no significant difference between either of 

the model outputs and the observations, nor between the two 

types of models. However, the MLR approach failed to hold 

one underlying assumption, whereas the ANN model was par- 

ticularly suited to predicting low DO. This comparison showed 

that considering the complexity of the natural processes that 

govern the water quality in reservoirs, the ANN model can pro- 

vide more accurate forecasts of hypolimnetic DO than the MLR 

approach (which assumes linear relationships between the in- 

puts and outputs). 

In conclusion, the ANN model using CNPSA provided a 

more robust simulation of DO in the Reservoir. By using this 

method, the reservoir and dam operators or water resources 

managers can estimate the DO in the deeper layers of the reser- 

voir by only using the measurements of online monitoring sta- 

tion on the upstream river. This research showed that the ANN 

approach is successful even with a relatively short dataset to 

train, validate and test the model which is another important 
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achievement of this research. In addition, this research showed 

that IVS, particularly the CNPSA method, is an effective tool 

to select only the important input variables, reducing redundant 

information in the model, and hence, developing an efficient 

model with high performance. Future research should focus on 

further analysing the uncertainty in these types of DDMs, parti- 

cularly, by considering the uncertainty in observed data, as well 

as comparing the results from DDMs to physically-based mod- 

ls, and using the developed models for scenario analysis includ- 

ing anthropogenic changes to the system and climate change. 
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