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ABSTRACT. Eutrophication is one of the main causes of the degradation of lake ecosystems. In this paper, multiple linear regression 

(MLR) and neural network (NN) methods were developed as empirical models to predict chlorophyll-a (Chl-a) concentrations in Lake 

Champlain. The models were developed using a large dataset collected from Lake Champlain over a 24-year period from 1992 to 2016. 

The dataset consisted of monitoring depth (Depth), total phosphorus (TP), total nitrogen (TN), alkalinity (RegAlk), temperature (TempC), 

chloride (Cl) and secchi depth (Secchi). Statistical analyses showed that TP, Secchi, TN and Depth demonstrated strong relationships 

with Chl-a concentrations. The simulation results revealed that both the MLR and NN models performed well in predicting Chl-a concen- 

trations, especially for low to moderate concentrations of Chl-a (< 7.5 μg/L). The NN model showed better accuracy and generalization 

performance in comparison with the MLR model for both the training and verification processes. In addition, both the developed MLR 

and NN models produce good results when used to predict Chl-a concentrations from 2017 to 2021. However, neither the MLR nor NN 

models can accurately predict high Chl-a concentrations (> 7.5 μg/L). These models can be useful for improving lake management and 

providing early warnings regarding the problem of eutrophication. 

 
Keywords: neural network (NN), multiple linear regression (MLR), eutrophication, chlorophyll-a (Chl-a) prediction, Lake Champlain, 

empirical models

 

 

 

1. Introduction 

Eutrophication has been one of the main water-based en- 

vironmental problems in lakes and reservoirs since the 1960s 

(Smith et al., 2006). It can promote the excessive growth and 

decay of plants and bacteria, including cyanobacteria blooms. 

During photosynthesis, cyanobacteria blooms consume nutri-

ents for lake biome survival and produce toxins which are poi-

sonous to humans and lake wildlife. It may take decades before 

enough nutrients are naturally eliminated from a lake for it to 

recover from eutrophication (Chambers et al., 2001; Hiscock et al., 

2003). Chlorophyll-a (Chl-a) can be used as a biomarker for the 

presence of cyanobacteria, as there is a direct relationship be- 

tween the mass of the cyanobacterial algal bloom and the con- 

centration of Chl-a in fresh water (Elliott et al., 2007; Burger et 

al., 2008; Freeman et al., 2009).  

The German agricultural chemist Justus von Liebig conduct- 

ed the first eutrophication study in 1950. Prior to this, Weber 

(1907) and Johnstone (1908) found a link between nutrients and 

aquatic productivity (Smith et al., 1999). In the following years, 

many eutrophication studies were conducted. Phosphorus is gen- 

erally regarded as the principal cause of lake eutrophication. In 
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addition, the increasing frequency of cyanobacteria blooms might 

be linked to climate change (Anderson et al., 2012; Pomati et 

al., 2017; Yao et al., 2018; Le Moal et al., 2019). Since the 1970s, 

the modeling approach has been considered to be an interesting 

tool due to the rapid development of computer techniques (Imboden, 

1974; Vollenweider, 1975). There are two main classes of eutrophi- 

cation modeling: empirical models and mechanistic models 

(Fornarelli et al., 2013). 

Empirical models mainly analyze relationships between 

predictor variables (e.g., Chl-a) and interest variables (e.g., nu- 

trients and temperature) based on available data sets. In addi- 

tion, they are more generic than mechanistic models and can 

provide good predictions for lakes (Van Huet, 1992). On the 

other hand, empirical models have large uncertainty levels due 

to inaccuracies in the input variables and modeling structures. 

The main modeling techniques of empirical models include the 

multiple linear regression (MLR), neural network (NN), data 

mining (DM) and tree-based methods. The first empirical model 

was the regression model, which assumed linear nutrients-Chl-

a relationships between variables (Dillon and Rigler, 1974; Re- 

ckhow, 1993). Brown et al. (2000) developed MLR models re- 

presenting nutrients Chl-a relationships using a large data set 

collected over 10 years from 360 lakes in Florida. However, their 

precision is low. Huszar et al. (2006) revealed that a multiple 

regression with log TP and log TN separating systems with 

high TN:TP (> 17 by weight) improved the predictive power  
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Figure 1. Location of study area in North America and sampling stations of Lake Champlain watershed. 

 

of the log TP-log Chl-a relationship based on a data set from 192 

lakes in tropical and subtropical regions. A new monthly re- 

gression model was developed and accurately predicted month- 

ly Chl-a medians based on the median summer TP concentra- 

tions and latitude (Dimberg et al., 2013). Matus-Hernández et 

al. (2018) evaluated the predictive performance of the simple 

linear regression (SLR), multiple linear regression (MLR) and 

generalized additive models (GAMs) based on Landsat image- 

ry. The result showed that MLR performed best in predicting 

log-transformed Chl-a. 

The statistical models of the 1970s and 1980s have evolved 

significantly over the last decade towards “data-driven” mo- 

dels. Such models need large data sets which were unavailable 

in the past, but which lake monitoring systems are now able to 

collect. In addition, the neural network (NN) has been applied 

in areas as diverse as business, physics, geology, medicine, 

engineering and, in particular, environmental engineering (Bar- 

zegar, and Moghaddam, 2016). NN is utilized as an efficient 

modeling approach to simulating, predicting, classifying or con- 

trolling a system and can be applied in every situation in which 

a relationship between the predictor variables and interest vari- 

ables exists regardless of the relationship’s complexity. How- 

ever, NN may not produce a specific equation. It is possible 

that running with the same data set would result in a different  

NN model because that NN is a learning algorithm that works 

by minimizing the error successively from the previous equa- 

tion. NN is now commonly used to study lake eutrophication 

because of its recognized ability to predict highly nonlinear and 

complex relationships (Ranković et al., 2010; Fornarelli et al., 

2013; Chen and Liu, 2014; Ieong et al., 2015). For example, the 

principle component regression (PCR), neural network (NN) 

and hybrid models were applied to predict and forecast the phy- 

toplankton dynamics in the Macau Main Storage Reservoir. 

The simulation result showed that the NN model has greater 

accuracy and generalization performance compared with the 

PCR models (Ieong et al., 2015). This paper is intended to ex- 

amine data-driven statistical model and neural network me- 

thods through a regional scale lake eutrophication case study in 

the North America. First, the contributions of lake water quality 

parameters will be analyzed (i.e., monitoring depth (Depth), 

total phosphorus (TP), total nitrogen (TN), alkalinity (RegAlk), 

temperature (TempC), chloride (Cl) and secchi depth (Secchi)) 

to algae bloom using correlation analysis; then Chl-a models 

using the multiple linear regression (MLR) and neural network 

(NN) methodologies will be developed for the Lake Champlain 

based on 24-year data from 1992 to 2016 and to predict the Chl-

a concentrations of Lake Champlain from 2017 to 2021 based 

on the validated MLR and NN models. 
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2. Data and Methodology 

2.1. Case Study Area and Data Collection 

Lake Champlain is one of the largest glacially formed lakes 

in North America, existing partially in the US states of Vermont 

and New York, and partially in Quebec, Canada. It is approxi-

mately 94 km in length, 19 km in maximum width, 122 m in 

maximum depth (though most of it is shallow water of about 

1.5 m in depth), and 19 m in mean depth (Smeltzer et al., 2012). 

The lake has 5 different environmental zones, which are shown 

in Figure 1 (New York State DEC and Vermont DEC, 2012): 

the South Lake, which is long, narrow and shallow; the Main 

Lake, which is the deepest and widest section of the lake; 

Malletts Bay, which is circumscribed by historical railroad and 

road cause-ways; the Inland Sea, which lies to the east of the 

Hero Islands; the Missisquoi Bay, which is a large and discrete 

bay rich with wildlife. The eutrophication problem in Lake 

Champlain started in the early 1980s due to high phosphorus 

levels from agricultural runoff and municipal sewage treatment 

plants, which caused excessive cyanobacteria algal blooms 

(CABs). As a result, the drinking water was contaminated by 

trihalomethanes (THMs) produced by CABs (Gopal, 2005).  

The 24-year data set (1992 ~ 2016) of water quality param-

eters used in the modeling process was taken from the website 

of the state of Vermont, which has operated under the Long-

Term Water Quality and Biological Monitoring Program on 

Lake Champlain (LTMP) since 1992 (New York State DEC and 

Vermont DEC, 2012). The state of Vermont decided to share Lake 

Champlain’s environmental data with the public to help research-

ers conduct studies that could provide solutions for the lake’s 

problems. Each year, 15 sampling locations throughout Lake 

Champlain were monitored approximately every two weeks from 

May to early November (Figure 1). These lake stations were 

sampled consistently throughout the entire monitoring period 

beginning in 1992, with the exception of lake stations 4 and 5, 

which were added in 2001, and station 15, which was added in 

2006 (New York State DEC and Vermont DEC, 2012). 

The data includes information on the total maximum daily 

loads of pollutants, available to the public and researchers via 

the Lake Champlain watershed management web site. In this 

modeling study, the data regarding 8 water quality parameters 

(i.e., chlorophyll-a (Chl-a, μg/L), total phosphorus (TP, μg/L), 

chloride (Cl, μg/L), secchi depth (Secchi, m), total nitrogen 

(TN, μg/L), temperature (TempC, ºC), alkalinity (RegAlk) and 

monitoring depth (Depth, m)) from the 15 stations from 1992 

~ 2016 were downloaded. 

 

2.2. Multiple Linear Regression (MLR)  

Some published Chl-a models use the statistical method of 

multiple linear regression (MLR) to investigate multiple scalar 

independent variables (Z = water quality parameters) that are hy-

pothesized to be linearly related to the dependent variable (Y = Chl-

a), which causes eutrophication in lakes. This is described below 

in the general matrix format for the MLR Equation (Khuri, 2013): 
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 (2) 

 

In this type of MLR model, Y is an n-by-1 vector of responses 

and represents the dependent or output variable (chlorophyll-a, 

Chl-a). Z is an n-by-8 design matrix for the model and repre-

sents the independent or input variables: total phosphorus (TP), 

total nitrogen (TN), chloride (Cl), secchi depth (Secchi), temper-

ature (TempC), monitoring depth (Depth) and alkalinity (RegAlk). 

β is an 8-by-1 vector of coefficients for the independent or input 

variables. ε is an n-by-1 vector of error terms. The short version 

of the general MLR format is written as Equation (3): 

 

0 1 2 3 4

5 6 7

CHla TP TN Cl Secchi

TempC Depth RegAlk

    

   

        

      
 (3) 

 

The MLR equation is solved using the least squares method. 

The unknown vector of coefficients β of the linear equation is 

estimated by minimizing the sum of squares of the residual 

errors between the observed data and the data predicted by the lin-

ear equation. The coefficients β that produce the best solution 

are found when the error between the linear equation model and 

the observed data is zero (Kariya, 2004). By setting ε = 0 and 

rearranging the equation, we get β = S(β)/Z, which gives the 

coefficients of matrix β and the predicted values. By comparing 

the predicted values with the observed values, we can judge the 

model’s accuracy.  

 

2.3. Neural Network (NN)  

Unlike other modeling techniques, NN does not generate 

a model with coefficients but instead produces multilayer inter-

connected neural processing units that imitate human brain ac-

tivity, in which each neuron in a layer is connected to every 

neuron in the next layer. Figure 2 shows the structure of neural 

networks. The outputs of the NN model are weights which are 

saved as an xml file. The file can then be used in the forecasting 

and verification of a different data set. 

In NN, the input data goes through the NN model, where 

it is multiplied by the weights (brain) in a forward direction. 

The information is then processed, and the output is compared 

with the observed value. The error resulting from the compare- 

son is backpropagated and becomes an input for the next predi- 

ction while the model weight (brain) is adjusted to minimize 

the error via several iterations. The data are plotted as variable 

importance charts which show the impacts of variables on the 

model, and also as synaptic weight charts which show the in- 
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fluences of neurons (Chen and Liu, 2014). 

 

 
 

Figure 2. The structure of neural networks (Nasrabadi, 2007). 

 

2.4. Examination of Modeling Methods  

To find the best Chl-a model for the Lake Champlain case 

study, three published methods, including the determination of 

coefficient (R2), standard error and confidence interval (CI) 

were used to evaluate the Chl-a models. The determination of 

coefficient (R2) was used to evaluate Chl-a models used in lake 

eutrophication studies (Çamdevýren et al., 2005; Rui et al., 

2012). The Pearson correlation coefficient (R) measures the lin- 

ear correlation between two variables (value between +1 and 

−1). The two variables show a strong positive or negative linear 

relationship when the R value is close to +1 or -1. Normally, 

there is a strong positive or negative linear relationship with 

two variables with higher R values. R2 (the square of the Pear- 

son R) indicates how closely the regression model fits the ob-

served data (value between 0 and 1). The closer the R2 value is 

to 1, the better the model fit. The standard error (SE) is an esti- 

mate of the average squared error (Kenney, 2013). The model 

is more accurate with the lower SE value. The standard error 

was used in the verification analysis of Lake Ontario (Thomann 

et al., 1979). Confidence interval (CI) thresholds are used to 

maintain small and evenly distributed errors, and error values 

outside the threshold (also called the limit) values are ignored. 

The lower the CI threshold value, the better the model. The 

critical values are the boundaries of the CI, found by using the 

z score table (the lower critical value = - Z (∂/2); the upper critical 

value = Z (∂/2)). Most commonly, the 95% confidence level is 

used with Z = 1.960. However, other confidence levels can be 

used, for example, 90% (Z = 1.645) and 99% (Z = 2.576). The 

critical values in most data analysis software packages are user-

defined inputs which are set manually before data processing. 

Figure 3 shows the flow chart of the methods of modeling Chl-

a concentrations in Lake Champlain. 

3. Results and Discussion 

3.1. Correlation Analysis  

Correlation analysis was performed on the water parame-

ters to rank their relative significance to Chl-a concentrations, 

as well as to describe their relationship. Table 1 and Figure 4 

show the result of the cross-correlation analysis, which exa- 

mines the relationship and impact of seven independent water 

quality parameters (i.e., TP, TN, Cl, Secchi, TempC, RegAlk 

and Depth) on the dependent variable (Chl-a) in Lake Cham- 

plain.  

 

 
 

Figure 3. The modeling approach. 

 

As expected, the cross-correlation analysis indicated that 

there was a strong positive linear relationship between the in-

dependent variable TP and the dependent variable Chl-a (R = 

0.817). Moreover, the independent variable TN and the depen- 

dent variable Chl-a showed at medium positive linear interre- 

lationship (R = 0.682). However, there was a medium negative 

linear relationship between the independent variable Secchi, a 

measure of water clarity which is reduced by the growth of 

CABs, and the dependent variable Chl-a (R = - 0.722) (Libes, 

2011). 

In addition, the analysis confirmed that there was a me-

dium positive linear relationship between two of the independ- 

ent variables, TP and TN (R = 0.678), due to the fact that they 

are both nutrients used in CAB growth (Downing and Mc- 

Cauley, 1992). The two independent variables Secchi and TP 

also showed a strong negative linear interrelationship (R =  
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Figure 4. Cross-correlation scatter plots showing the relationship between the 7 independent water quality variables and dependent 

variable Chl-a (1992 ~ 2016). 

 

Table 1. Pearson’s Correlation Matrix 

Parameters 
Chl-a 

(μg/L) 

RegAlk 

(μg/L) 

TempC 

(°C) 

Secchi 

(m) 

TN 

(μg/L) 

Cl 

(μg/L) 

TP 

(μg/L) 

Depth 

(m) 

Chl-a(μg/L) 1.000  0.159  0.373  -0.722  0.682  -0.282  0.817  -0.402  

RegAlk(μg/L) 0.159  1.000  0.144  -0.453  0.065  0.534  0.347  0.042  

TempC(°C) 0.373  0.144  1.000  -0.486  0.107  0.161  0.482  -0.441  

Secchi(m) -0.722  -0.453  -0.486  1.000  -0.544  -0.059  -0.874  0.534  

TN(μg/L) 0.682  0.065  0.107  -0.544  1.000  -0.380  0.678  -0.286  

Cl(μg/L) -0.282  0.534  0.161  -0.059  -0.380  1.000  -0.078  0.083  

TP(μg/L) 0.817  0.347  0.482  -0.874  0.678  -0.078  1.000  -0.515  

Depth(m) -0.402  0.042  -0.441  0.534  -0.286  0.083  -0.515  1.000  
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Table 2. Lake Champlain MLR Modeling Results for 1992 ~ 2009 

MLR model# R R2 Adjusted R2 Std. Error  Predictors 

1 0.766 0.587 0.586 2.076 Constant, TP 

2 0.808 0.654 0.651 1.906 Constant, TP, Cl 

3 0.814 0.663 0.659 1.884 Constant, TP, Cl, Secchi 

4 0.818 0.669 0.663 1.872 Constant, TP, TP, Cl, Secchi, TN 

 

Table 3. Chlorophyll-a (Chl-a) MLR Coefficients of the Four Lake Champlain MLR Models (1992 ~ 2009) 

MLR model# 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 
95% Confidence Interval 

B Std. Error Beta Lower Bound Upper Bound 

1 
(Constant) 1.800 0.250  7.211 0.000 1.308 2.292 

TP(μg/L) 0.173 0.010 0.766 18.172 0.000 0.154 0.192 

2 

(Constant) 5.484 0.600  9.137 0.000 4.301 6.666 

TP(μg/L) 0.172 0.009 0.760 19.607 0.000 0.154 0.189 

Cl(μg/L) 0.002 0.000 -0.257 -6.641 0.000 0.000 0.000 

3 

(Constant) 8.417 1.294  6.503 0.000 5.867 10.967 

TP(μg/L) 0.128 0.019 0.566 6.650 0.000 0.090 0.166 

Cl(μg/L) 0.003 0.000 -0.279 -7.112 0.000 0.000 0.000 

Secchi(m) -0.431 0.169 -0.218 -2.550 0.011 -0.765 -0.098 

4 

(Constant) 6.646 1.567  4.241 0.000 3.558 9.734 

TP(μg/L) 0.111 0.021 0.490 5.277 0.000 0.069 0.152 

Cl(μg/L) 0.003 0.000 -0.243 -5.635 0.000 0.000 0.000 

Secchi(m) -0.436 0.168 -0.220 -2.593 0.010 -0.767 -0.105 

TN(μg/L) 0.004 0.002 0.112 1.978 0.049 0.000 0.007 

 

Table 4. ANOVA Analysis of the Four Lake Champlain MLR Models (1992 ~ 2009) 

MLR model# Sum of Squares df Mean Square F Sig. 

1 

Regression 1422.661 1.000 1422.661 330.227 0.000 

Residual 999.486 232.000 4.308   

Total 2422.147 233.000    

2 

Regression 1582.888 2.000 791.444 217.839 0.000 

Residual 839.259 231.000 3.633   

Total 2422.147 233.000    

3 

Regression 1605.958 3.000 535.319 150.852 0.000 

Residual 816.189 230.000 3.549   

Total 2422.147 233.000    

4 

Regression 1619.669 4.000 404.917 115.550 0.000 

Residual 802.478 229.000 3.504   

Total 2422.147 233.000    

 

-0.874). The analysis revealed the less significant trend towards 

a medium negative linear relationship between Secchi and TN 

(R = -0.544). These results suggested that the following MLR 

and NN modeling approaches should be successful if the levels 

of TP and TN are assumed to indeed be positively linearly re-

lated to Chl-a, and, conversely, Secchi is negatively linearly re-

lated to Chl-a. 

 

3.2. Multiple Linear Regression (MLR) Models 

3.2.1. Training Processes of MLR Models 

The IBM SPSS multiple linear regression (MLR) tool was 

used to explore the MLR models using Lake Champlain moni-

toring station data from 1992 to 2016. Early yearly data (1992 

~ 2009) were used to create the models, while the later yearly 

data (2010 ~ 2016) were used to verify the models. The statisti-

cal software package was used to analyze eutrophication levels 

using the later yearly Lake Champlain dataset as the model train-

ing dataset, with the critical value for the models being 95% and  

the error range being from -1.96 to 1.96 (models with errors out-

side this range were rejected). The stepwise selection feature in 

the IBM SPSS software was used to determine whether each 

independent variable (i.e., TP, TN, Cl, Secchi, TempC, RegAlk 

and Depth) was significant for the dependent variable (Chl-a) 

in the model. In the stepwise method, insignificant variables were 

excluded from the models. The results of this modeling analy- 

sis are shown in Table 2 and the Chl-a MLR coefficients of the 

four Lake Champlain MLR models are presented in Table 3.  

The analysis of variance (ANOVA) provided a method to 

compare the different models. Table 4 shows the results of the 

ANOVA, which indicated that although all four MLR models 

found were significant (Sig. = 0), the last model (MLR model 

#4) had the minimum error mean square, meaning that of the 

all models, it provided the most accurate prediction. The maxi-

mum Pearson product-moment correlation coefficient of MLR 

model #4 (R = 0.818) indicated the strongest linear relationship 

between the variables. In addition, the maximum determination 
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coefficient of MLR model #4 (R2 = 0.669) indicated the linear 

model had a good fit. The minimum standard error of MLR 

model #4 (error = 1.872) indicated that the error of the sample 

mean with respect to true mean was slight low, which showed 

the linear regression model provided accurate estimation. The 

minimum confidence interval (CI) for the coefficients of MLR 

model #4 indicated that the error limit boundary for accepting 

or rejecting a model was small for all the variables, which fur- 

ther demonstrated that MLR model #4 was the most accurate 

MLR model. 

The results of MLR model #4 showed that four parameters 

(i.e., TP, Cl, Secchi and TN) were significant predictors of Chl-

a concentrations over the early period (1992 ~ 2009), and thus 

of CAB growth. The parameters TP and TN were positively cor-

related with the Chl-a concentrations, while Secchi was nega-

tively correlated with the Chl-a concentrations. These results sup-

ported the results of the previous correlation analysis and are 

also in agreement with other scientific literature (Dimberg et al., 

2013; Cha and Stow, 2014; Bhagowati and Ahamad, 2018). 

Moreover, the results of MLR model #4 revealed that Cl was the 

fourth new significant predictor, showing a negative relation-

ship with Chl-a concentrations. Although this result was not 

obtained by the statistical analysis above, it was in agreement 

with other scientific literature (Shillito and De Marle, 1992). 

MLR models #1 to #4 indicated that TP was the most signi-

ficant predictor of Chl-a concentrations and therefore CAB 

growth, which is supported by most of the scientific literature  
 

(Correll, 1998; Brown et al., 2000; Vinçon-Leite and Casenave, 

2019). Four parameters (TP, TN, Secchi, Cl) were significant 

predictors of Chl-a concentrations over the entire time period 

of 24 years. These useful predictors necessitate testing with his- 

torical data. Therefore, MLR model #4 was chosen for further 

veryfica-tion studies and its equation is shown below: 

 

6.646 0.111 0.004

0.436 Sec 0.0003

Chl a TP TN

chi Cl

     

   
 (4) 

 

 
 

Figure 5. MLR-Model #4 standard error distribution (Mean = 

-1.65×10-15, standard deviation = 0.991, and sample number = 

234). 
 

 
 

Figure 6. Lake Champlain chlorophyll-a levels by year (1992 ~ 2009), MLR model R2 = 0.669, Observed Chl-a values (solid yellow 

line) compared to predicted Chl-a values using the MLR model (dotted blue line). 
 

 
 

Figure 7. Lake Champlain chlorophyll-a levels by year (2010 ~ 2016), MLR model R2= 0.830, Observed Chl-a values (solid yellow 

line) compared to predicted Chl-a values using the MLR model (dotted blue line). 
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3.2.2. Verification Processes of MLR model #4 

As explained above, yearly Lake Champlain water quality 

monitoring data for the period from 2010 to 2016 were used for 

the verification of the most accurate model, MLR model #4. 

The examination of the standard error distribution histogram in 

Figure 5 revealed that the model errors had a uniform distri- 

bution with few errors outside of the standard distribution 

range, indicating good verification results. The verification 

data set produced an R2 = 0.830, which was higher than the R2 

= 0.669 obtained from the MLR training data set. The predicted 

Chl-a values of MLR model #4 aligned well with the observed 

values from both the training and verification processes (Figures 

6 and 7), especially when concentrations were lower than 7.5 

μg/L. However, most of MLR model #4’s prediction errors 

were obtained from Lake Champlain monitoring stations 01, 

02, 14 and 15, where most concentrations were higher than 7.5 

μg/L. As shown in Figures 6 and 7, these errors were not ran- 

dom. Marshall and Peters (1989) indicated that eutrophic lakes 

have higher Chl-a variability than oligotrophic lakes. The nu- 

trients levels in these four stations are higher than other sta- 

tions, which may affect the accuracy of the modeling results.  

 

3.3 Neural Network (NN) Model 

3.3.1 Training Processes of NN Models  

Several studies suggested using neural network (NN) me-

thods to provide effective Chl-a prediction (Coad et al., 2014; 

Ieong et al., 2015; Xu et al., 2015). The IBM SPSS multilayer 

perceptron (MLP) NN tool was used to explore NN models us-

ing Lake Champlain monitoring station data. Approximately 70% 

of the early period’s (1992 ~ 2009) yearly data were used to 

create the NN models, while the remaining 30% were used to 

simultaneously verify each model as it was created. Later year- 

ly data (2010 ~ 2016) were used to verify the NN model. It is 

noted that running the same data set using NN model could 

result in a different NN model with different number of runs. 

Improving the NN results is an iterative and time-consuming 

process. Previous studies suggested manipulating the number 

of layers and the ratio between the training and prediction data. 

After implementing many of the recommended techniques to 

improve the prediction of the NN model, the best NN model 

found was employed in this study for the further NN analysis. 

Figure 8 displays the results of the NN synaptic weight 

chart, which represents the feedforward NN Chl-a model archi- 

tecture as connections flowing forward from the input layer to 

the output layer without any feedback loops. 

The NN importance chart (Figure 9) shows the degree of 

importance of each independent variable to the network’s mod- 

el-predicted Chl-a value. The results of the analysis showed 

that the independent variable TP (Normalized Importance ri = 

100%) had the greatest effect on how the network classifies 

Chl-a models, followed by the variables TN (ri = 57.41%), Cl (ri 

= 47.45%) and Secchi (ri = 36.44%), which showed the same 

result as the analysis of correlation and MLR model #4. Interest- 

ingly, the NN analysis suggested that RegAlk (ri = 34.69%) and 

TempC (ri = 30.03%) were also important. The remaining tested 

variable (Depth) was considered relatively unimportant. These 

results are also in agreement with those of the published literature 

(Karul et al., 1999). 

 

 
 

Figure 8. Synaptic weight chart of the NN model for Lake 

Champlain using early period data (1992 ~ 2009). 

 

 
 

Figure 9. NN analysis water quality variables importance chart. 

 

 
 

Figure 10. NN model predicted Chl-a values versus observed 

Chl-a values. 

 

Figure 10 shows the observed Chl-a values compared with 

the NN model’s predicted Chl-a values. It can be seen that the 

errors between the predicted values of the NN model and the 

observed values were low when the Chl-a concentration was 
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lower than 7.5 μg/L. However, the predicted values became less 

accurate at higher Chl-a concentrations (> 7.5 μg/L). This is in 

good agreement with the MLR modeling study results. 

 

3.3.2. Verification Processes of NN Models 

As explained above, yearly Lake Champlain water quality 

monitoring data for the early period (2010 ~ 2016) were used for 

the verification of the NN model. The predicted Chl-a values of 

the NN model aligned well with the observed values both in the 

training and verification processes (Figures 11 and 12), espe- 

cially when the concentration was lower than 7.5 μg/L. The 

verification dataset produced the R2 value of 0.845, which is 

greater than the R2 value of 0.719 obtained from the NN train- 

ing data set. In addition, the higher R2 showed that the NN 

model has better simulation performance than MLR model #4 

in both the training and verification processes. However, at 

stations 01, 02, 14 and 15, when Chl-a concentrations were higher 

than 7.5 μg/L, the predicted values of the NN model were rela- 

tively less accurate, showing the same results as the MLR model 

#4. The nutrients levels in these four stations are higher than 

other stations which may lead to the relatively lower modeling 

accuracy. Marshall and Peters (1989) also indicated that eutro- 

phic lakes have higher Chl-a variability than oligotrophic lakes. 

 

3.4. MLR and NN Models for Chl-a Prediction  

Both the developed #4 MLR model and the NN model 

were applied to predict the Chl-a levels of Lake Champlain 

over the next five years (2017 ~ 2021). Firstly, the dataset of 

seven independent parameters (i.e., TP, TN, Cl, Secchi, TempC, 

RegAlk and Depth) over the period from 2018 to 2021 were 

predicted using the EXCEL prediction tool based on the param-

eters’ respective changing trends. In particular, the 2017 tem-

perature parameter dataset was lacking, while the datasets of 

the six other independent parameters and Chl-a were able to be 

collected. Only the temperature data in 2017 were predicted; 

the Chl-a concentration data in 2017 were used here as valida-

tion indicators for the prediction processes. 

The predicted values of the Chl-a levels in Lake Cham-

plain by year (2017 ~ 2021) are shown in Figure 13. The pre- 

dicted values and observed values align well with each other in 

stations where Chl-a concentrations were lower than 7.5 μg/L, 

while the prediction values were less accurate for stations with 

higher concentrations (> 7.5 μg/L). In addition, the prediction re- 

sults of the developed MLR #4 and NN models showed similar 

trends and magnitudes in most stations. The predicted values 

of MLR model #4 showed more obvious fluctuations than the 

predicted values of the NN model in stations 01, 14 and 15. More- 

over, MLR model #4 produced a better prediction result (R2 = 

0.845) than the NN model (R2 = 0.837) regarding the Chl-a 

levels in Lake Champlain from 2017 to 2021, although the dif- 

ferrences were small.  

 

3.5. Discussion 

The algal conditions caused by excessive phosphorus lev-

els in Missisquoi Bay and the South Lake of Lake Champlain 

normally last for much of the year, especially in summer. Due 

to the detrimental effects of eutrophication problems in Lake 

Champlain, related research has increased in recent years. Parts 

of Lake Champlain are eutrophic, resulting in the excessive grow-

th of aquatic plants and unpleasant and potentially toxic season-

al algal blooms (Jokela et al., 2004). Several studies have been 

published concerning Lake Champlain. For example, in 1989, 

a group of scientists from the Vermont Department of Environ-

mental Conservation published a comprehensive study of Lake 

Champlain and concluded that it would be unrealistic to use daily 

data for Lake Champlain to detect emerging lake eutrophica-

tion problems (Smeltzer et al., 1989). In 1997, satellite images 

of the watershed were used to estimate the proportions of attrib-

uted nonpoint source loads (Millette, 1997), and in 2009 a Danish 

study suggested that eutrophication in Lake Champlain was also 

affected by changes in climate (Jeppesen et al., 2009). In addi-

tion, in 2012, sewer installation, population expansion and agri-

cultural and urban development were found to be the main causes 

of the eutrophication problems in Lake Champlain (Levine et al., 

2012). 

According to the correlation analysis, TP has the most lin-

ear relationship with Chl-a (positive), followed by Secchi (neg-

ative), TN (positive) and Depth (negative). TP and TN were need-

ed for CAB growth, while the parameters Depth and Secchi 

were reduced by the growth of CABs, which could explain the 

results of the correlation analysis. 

The determination coefficients R2 of MLR model #4 for the 

training and verification processes were respectively 0.669 and 

0.830. The determination coefficients R2 of the NN model for 

both the training (0.719) and verification (0.845) processes were 

greater than those of MLR model #4, which showed a better a-

bility to predict algal growth in Lake Champlain. In a similar 

study, Maier et al. (2010) also reported that NN provided better 

results than the MLR Models, especially for simulating both 

linear and nonlinear systems. First the correlations between the 

lake water quality parameters, such as TP and TN, may be asso-

ciated with multicollinearity issue. Additionally, input parame-

ters for MLR may have high complex nonlinear relationship 

with Chl-a, expecting that MLR alone may have less prediction 

accuracy.   

The predicted results of both MLR and the NN models for 

the Chl-a levels in Lake Champlain from 2017 to 2021 were closer 

to the observed values in stations with low to moderate levels 

of Chl-a (< 7.5 μg/L). The determination coefficients R2 of MLR 

model #4 and the NN model were respectively 0.845 and 0.837, 

indicating that MLR model #4 had relatively better prediction 

results than the NN model. The future prediction for the period 

from 2018 to 2021 can be further improved when more data in-

cluding more field data are available for the seven input para- 

meters (i.e., TP, TN, Cl, Secchi, TempC, RegAlk and Depth). 

For stations 01, 02, 14 and 15 in the narrow north and south 

ends of Lake Champlain, high levels of Chl-a (> 7.5 μg/L) were 

recorded. For these south and north ends of the lake, the results 

of training, validation and prediction processes of both the MLR 

and NN models were not close to the observed values com- 

pared to other monitoring stations. This could be based on the 

follows: (1) the southern monitoring stations 01 and 02 are in 
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shallow water at the mouth of the Poultney river, which con- 

tributes a large amount of nutrients, particularly Cl, to the lake, 

(2) farms and agricultural land may contribute fertilizers with high 

TN concentrations to the northern area of the lake including 

monitoring stations 14 and 15, (3) Marshall and Peters (1989) 

indicated that eutrophic lakes had a higher variability of Chl-a 

than oligotrophic lakes. Most stations in the Lake Champlain are 

with low to moderate levels of Chl-a (< 7.5 μg/L), where both 

MLR and NN have much better accuracy except the southern and  

northern end areas with high water nutrient concentrations (> 

7.5 μg/L), and (4) the complex geometry and hydraulic condi- 

tions in the narrow northern and southern end areas may further 

affect the MLR and NN modeling results, better physical mod- 

els considering complex near shore mixing can be used for such 

small mixing zones; or hybrid PCR-NN methods that have both 

linear and nonlinear modeling capabilities could be other alter- 

native methods for these small complex near shore mixing 

zones (Ieong et al., 2015). 

 

 
 

Figure 11. Lake Champlain chlorophyll-a levels by year (1992 ~ 2009), NN model R2 = 0.719, Observed Chl-a values (solid yellow 

line) compared to predicte Chl-a values using the MLR model (dotted blue line). 

 

 
 

Figure 12. Lake Champlain chlorophyll-a levels by year (2010 ~ 2016), NN model R2 = 0.845, Observed Chl-a values (solid yellow 

line) compared to predicted Chl-a values using the MLR model (dotted blue line). 

 

 
 

Figure 13. Lake Champlain chlorophyll-a levels by year (2017 ~ 2021), MLR model R2 = 0.845, NN model R2 = 0.837, observed 

Chl-a values (red point) compared to predicte Chl-a values using the MLR model (yellow line) and NN model (blue line). 
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4. Conclusions 

The parameters of TP, Secchi, TN and Depth showed great 

impact on the concentrations of Chl-a. For most parts of Lake 

Champlain, where low to moderate levels of Chl-a (< 7.5 μg/L) 

were recorded at the majority of water quality monitoring sta-

tions, both MLR and NN models can accurately simulate algal 

growth. The determination coefficients R2 of the NN model for 

both the training (0.719) and verification (0.845) processes were 

greater than those of MLR model #4, which showed a better 

ability to predict algal growth in Lake Champlain. Furthermore, 

the determination coefficients R2 of MLR model #4 and the NN 

model were respectively 0.845 and 0.837, which shows that the 

results predicted by MLR model #4 were superior to those pre- 

dicted by the NN model for the period from 2017 to 2021 in Lake 

Champlain. In general, there was no significant difference be- 

tween MLR model #4 and the NN model in predicting Chl-a 

concentrations in Lake Champlain. However, for the narrow 

northern and southern end areas of Lake Champlain with high 

levels of Chl-a (> 7.5 μg/L), including southend water quality 

monitoring stations 01, 02 and northend stations 14, 15, more 

monitoring stations with more field data or other modeling me- 

thods than MLR and NN are preferable for these small near-

shore mixing zones.  
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