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ABSTRACT. With the rapid development of Central China, the temperature in this region is continuously increasing. Extreme weather 

events (e.g., high-temperature weather for many consecutive days) are becoming frequent. In order to provide future theoretical guidance 

on the direction of local development and the prevention of extreme natural disasters, the daily datasets of 12 meteorological stations in 

three provinces were collected. The corresponding predictors from 25 large-scale climatic factors were then screened using stepwise 

regression. A stepwise regression and statistical downscaling (SRSD) approach was developed to establish the statistical relationship. 

The future temperature results were projected by the weather generator, and the probability of extreme weather occurrence was analyzed 

by extreme values. The results indicate that future temperature in Central China shows an increasing trend from 2036 to 2065 and 2066 

to 2095, with the representative concentration pathway 4.5 (RCP4.5) scenario showing a greater increase in temperature than the repre- 

sentative concentration pathway 8.5 (RCP8.5) scenario. Hunan Province has the largest temperature increase, followed by Hubei Prov- 

ince and Henan Province. The average annual duration of heat waves in Central China is 74.7 days. 
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1. Introduction 

According to the Blue Book on Climate Change in China 

(2020), the global average temperature in 2019 increased by 

about 1.1 ℃ compared with that before industrialization in the 

eighteenth century (National Cllimate Center, 2020). Since the 

1980s, every decade has been warmer than the previous decade 

and warming trends have become apparent. This may be 

stemmed from the development of regional industry. With pro- 

viding good economic development for the local area, the green- 

house gases generated in the process continuously sink into the 

atmosphere, which could increase the difficulty of global warm- 

ing curbs and the probability of extreme climatic events. There- 

fore, the reasonable projection of future temperature changes 

has important practical significance for guiding the formulation 

of policies and measures to cope with climate change and dis- 

aster prediction. 

In terms of statistical downscaling, there are also many 

studies and concerns about the simulation performance on air 

temperature. For example, Fan et al. (2013) compared the results 

predicted in the model with the measured data and found that 

the results were better in predicting the air temperature using 

statistical downscaling in China; the average maximum corre- 

lation correlation coefficient of characterization error exceeded  
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or approached 0.90 in most areas. Among them, statistical down- 

scaling model (SDSM) can combine multiple analysis methods 

and downscaling methods to simulate more accurate prediction 

results. Chen et al. (2012) introduced the SDSM statistical 

downscaling model in Jianghuai Basin based on the combina- 

tion of multiple linear regression analysis and random weather 

generator for temperature estimation; the results showed that 

the extreme temperature data simulated by the statistical down- 

scaling method were in a good agreement with observed tem- 

perature values. Liu et al. (2019) selected the SDSM model to 

study the trends and probabilities of future climate changes in 

the Ganjiang River Basin. Guo et al. (2012) used SDSM model 

to estimate the long-term temperature thermal effect and the re- 

sulting population death risk in Shanghai under scenarios A2 

and B2; the results showed that the population death risk 

caused by temperature thermal effect in Shanghai will increase 

in the future, and the increase in the long-term death risk in the 

future is much higher than that in the mid-term future. 

Central China includes Hubei, Hunan and Henan Provinces. 

From the actual situation in recent years, it can be seen that 

there is a relatively obvious increase in temperature, and the 

frequency, maximum and duration of high temperature events 

in summer have increased significantly. The Meteorological 

centers have issued hot-red-early warnings for many times, 

especially the surface temperature of some central cities is as 

high as 40 ℃. For example, on August 2, 2021, the Meteoro- 

logical Observatory of Wuhan issued a yellow-early warning 

signal of high temperature: it is expected that the maximum 
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temperature would reach more than 35 °C on most areas in our 

city and up to 37 °C locally in the next 3 days (National Early 

Warning Information Release Center, 2021). The factors con- 

tributing to these increases are multifaceted, but the changes and 

magnitude of trends thereafter should be sufficient to attract at- 

tention. 

Based on the previous research, Coupled Model Intercom- 

parison Project Phase 5 (CMIP5) has been fully proved to be 

highly suitable in China. The data is perfect and easy to obtain, 

which makes the research can be carried out more smoothly. In 

addition, there was often a lack of effective screening predictors 

in the previous research studies. Therefore, to effectively screen 

out predictors, it is feasible and innovative to introduce situa- 

tional climate change in CMIP5 into the combination of SDSM 

and stepwise regression analysis to obtain more suitable temper- 

ature change estimation results in central China.  

Therefore, the objective of this study is to develop a step- 

wise regression and statistical downscaling (SRSD) model for 

exploring the specific range of temperature increase in the con- 

text of greenhouse gas emissions, as well as the possibility of 

extreme weather. It is expected to provide theoretical support 

for the local government to enact appropriate policies and strate- 

gies under the local actual situation, comprehensive economic, 

environmental, demographic and other factors. The specific ob- 

jectives are listed as follows: (1) Daily datasets of meteoro- 

logical stations and corresponding climatic factors in National 

Centers for Environmental Prediction (NCEP) will be obtained; 

appropriate predictors from large-scale climatic factors will be 

identified by stepwise regression analysis. (2) The obtained data 

and predictors will be imported into SDSM model to establish 

statistical relationship; future temperature changes over central 

China will be developed through weather generator. (3) Proba- 

bility analysis on the results of temperature changes will be 

performed; the trends in the frequency and duration of extreme 

weather events such as droughts will be analyzed. (4) Reasons 

for projection results in light of the regional characteristics will 

be explored; theoretical guiding opinions on the development 

strategies as well as disaster prevention and mitigation or res- 

ponse policies will be discussed.  

2. Development of Stepwise Regression and 

Statistical Downscaling (SRSD) Model 

In this study, we developed a stepwise regression and sta- 

tistical downscaling (SRSD) model to achieve the purpose of 

analyzing temperature changes and the probability of extreme 

weather events. The flow chart is provided in Figure 1. Firstly, 

the stepwise regression analysis method is used to select the 

prediction factors. The basic idea of stepwise regression method 

is to select the most important variables from a large number of 

selectable variables, so as to establish a regression analysis pre- 

diction model between independent variables and dependent 

variables. The basic idea of stepwise regression is to introduce 

all independent variables one by one; the introduction condi- 

tion is that the probability or frequency of F-test for the sum of 

squares of partial regression are significant and meet the set 

values. At the same time, the old variables that have been intro- 

duced before are tested after each new variable is introduced; 

the old variables will be eliminated if the sum of squares of the 

flat regression is no longer significant after the new variable is 

introduced. By introducing new variables and removing the old 

variables, the regression equation is established between all 

independent variables and dependent variables. 

 

 

 

Figure 1. Technical flowchart. 

 

In this study, the predictive factors most related to daily 

temperature at meteorological stations can be selected from 25 

climatic factors by stepwise regression analysis. The regression 

equations are not required, but the significance of the impact of 

predictors on the measured data and the independence between 

predictors are ensured. Effective selection of predictive factors 

is a good premise for establishing statistical relationship and 

prediction model. There are some differences in the results of 

temperature changes predicted by different predictors, so it is 

necessary to select appropriate predictors under multivariate and 

multicollinearity conditions based on the stepwise regression 

analysis method.  

The SDSM model is used to establish the statistical rela- 

tionship between large-scale climate data and measured data. 

The large-scale GCM models under different CMIP5 scenarios 

will be inputted into SDSM to obtain temperature changes in 

central China. SDSM merges the idea of random weather gen- 

erators in a variety of traditional multiple regression methods 

(Wilby et al., 1999). This combination helps to better function 

the two methods. Specifically, multiple regression methods will 

make the interannual variability estimate too low; however, ran- 

dom weather generators can overcome this weakness by relying 
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on their random simulation technique, which could make the 

variance of daily data sequences closer to the actual observed 

value (Chen et al., 2012). 

Multiple regression method refers to the regression method 

of studying one dependent variable and two or more indepen- 

dent variables. Linear or nonlinear quantitative relationships bet- 

ween multiple variables or between multiple independent vari- 

ables and dependent variables can be established to reflect the 

law that the number of a phenomenon or thing is affected by 

the change of the number of multiple phenomena or things, 

which thus can produce the corresponding change. Therefore, 

multiple regression is a regression model between a dependent 

variable (predicted object temperature) and multiple indepen- 

dent variables (predictors). For multiple linear regression, let 

x1, x2, …, xm be m independent variables that can be accurately 

measured or controlled. If y is linearly related to m independent 

variables (i.e., x1, x2, …, xm) data for group t, the relationship 

between dependent variable yi and independent variables (i.e., 

xi1, xi2, …, xim) will be obtained after t trials, which can formu- 

lated as follows: 

 

1 0 1 11 2 12 1 1

2 0 1 21 2 22 2 1

0 1 1 2 2 1

m m

m m

t t t m tm

y a a x a x a x

y a a x a x a x

y a a x a x a x







= + + ++ +

= + + ++ +

= + + ++ +

       (1) 

 

where i = 1, 2, …, t; a0, a1, a2, …, am are m + l coefficients to 

be estimated; βi denotes the effect of random factors on yi in the 

ith trial. For simplicity, this t-equation is represented as a matrix 

form: 

 

Y XA B= +             (2) 

 

where Y = (y1, y2, …, yt), A = (a0, a1, a2, …, am) and B = (β1, 

β2, …, βt). The formula above is the mathematical model of m-

element linear regression (Fu et al., 2003). 

Random weather generators are a series of statistical models, 

which can construct climatic elements through stochastic simu- 

lation processes. They can be simply regarded as complex ran- 

dom number generators. The weather generator can obtain a 

complete statistical relationship model by directly fitting the 

actual observed values of climatic factors. The model is then 

used to simulate time series of climatic variables randomly. 

One of its advantages is that it cannot only generate the mean 

value of climate variables, but also adjust climate variability, 

resulting in an arbitrary length of time series to meet require- 

ments (Wu and Wang, 1998). The basic principle can be sum- 

marized as the following formula based on the above: 

 

0 1

m

i j ij ii
T P  

=
= + +           (3) 

 

where Ti is the temperature variable (e.g., daily average); Pij is 

a large-scale predictor; m is the number of predictors; α is the 

mode parameter; γi is the mode error. 

After obtaining the future temperature change data, the 

probability of extreme weather events in the future based on the 

specific trend of the data can be calculated. Because extreme 

events are small probability events, they are reflected in tem- 

perature projections that their values deviate from the extreme 

values at both ends of the normal value. Extreme weather events 

are extremely damaging to the economy of the region as well 

as to the safety of the people, so it is necessary to analyze and 

prevent them in advance. In general, the exact distribution of 

extreme values is difficult to determine, and the gradual distri- 

bution of extreme values is mainly investigated (Wang et al., 

2006; Li, 2007; Wu, 2009; Gu et al., 2019). The main extreme 

value distributions can be summarized as: Let X1, X2, …, Xn be 

independent and identically distributed random variables with a 

distribution function F(X) such that Yn = max(X1, X2, …, Xn). 

The distribution function of Yn is T(X) = Fn(X). If there is an > 

0 and bn (n → ∞), the probability T(X) = Pr{(Yn - bn) / an ≤ X} 

holds, T(X) is belong to three distributions (Shi, 2006; Zhang 

et al., 2021). 

Gumbel Extreme Value Distribution: 

 

( ) ( )exp expT X x= − −             (4) 

 

Frechet Extreme Value Distribution: 

 

( )
( )

0,  0

exp ,  0

x
T X

x x


= 

− 

          (5) 

 

Weibull Extreme Value Distribution: 

 

( )
( )exp ,  0

1,  0

x x
T X

x

  − −   = 
 

         (6) 

 

where β is the distribution parameter in Equations (5) and (6).  

3. Overview of the Study Area 

Central China (Figure 2), as one of the seven geographical 

subdivisions of China, includes the provinces of Henan, Hubei 

and Hunan. It is located in central China and mainly covers the 

middle and lower reaches of the Yellow River as well as the 

middle reaches of the Yangtze River. In the hinterland of China, 

it is bordered by five geographical subdivisions: North China, 

East China, South China, Northwest China and Southwest China. 

It has many national trunk lines and is a key road to connect all 

parts of the country. The topography and landforms of central 

China are very diverse, mainly including mountains, plains, hills, 

basins, etc. Therefore, many microclimatic characteristics have 

emerged, which are still temperate monsoon climates and sub- 

tropical monsoon climates. However, the temperature changes 

in different regions are not stable due to a variety of factors. 

The climate of central China is divided into Qinling Moun- 

tains and Huaihe River. The south of Huaihe River is subtropic- 

cal monsoon climate, and the north is temperate monsoon cli- 

mate. Some scholars have studied temperature changes based 
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on the historical phenological records of the past 150 years in 

central China. The results show that temperature changes in cen- 

tral China have been obviously characterized by interannual to 

interdecadal fluctuations since the 1950s; however, the main 

cycle of change before the 1920s is about twelve to fourteen 

years. The economy of central China has been developed rapidly 

after the 1990s, when the subsequent warming trend and range 

significantly exceed the previous interdecadal fluctuation level. 

At the end of the last century, the temperature has increased 

significantly compared with the same cycle in the middle of the 

last century (Zheng et al., 2015). 

Based on the principle of spatial uniform distribution, four 

meteorological stations were selected in each province. Their 

location distributions are shown in Figure 2. In this study, daily 

mean temperature was used from 1980 to 2010 at 12 weather 

stations, which are distributed evenly in the provinces of Henan, 

Hubei and Hunan. The data were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) and National 

Centers for Environmental Information (NCEI). The corresponding 

year and region of NCEP datasets came from the physical sci- 

ence laboratory (PSL) with a horizontal resolution of 1.5° × 

1.5°. The climatic factors to be screened were included 25 fac- 

tors such as geopotential height, relative humidity, east wind, 

and north wind in different pressure layers. The global climate 

model was The Canadian Earth System Model version 2 (Can- 

ESM2) with a horizontal resolution of 2° × 2.5°. The scenarios 

are RCP4.5 and RCP8.5, which derived from CMIP5 of World 

Climate Research Program (WCRP). The SDSM model used is 

obtained in https://sdsm.org.uk/sdsmmain.html, and Version is 

5.3 more stable. 

4. Model Evaluation 

The observed data and the NCEP predictor from 1980 to 

1995 for the calibration model are shown in Table 1. It shows 

the range of results for R², Standard Error (SE), and Debin 

Watson for each month at each meteorological station. The R² 

values shows that the model can be sufficient used to project 

future monthly temperatures. In addition, the calibration model 

for each site meets the requirements of Debin Watson, most of 

which are close to 2. Moreover, the SE values are between 2.5 

and 5.5, which shows that the relative deviation between the 

simulated values and observed values is small.  

In general, the four stations in Henan Province have better 

R², with SE values below 4.5. Although the initial Debin 

Watson value is low, it is within the reasonable error range. It 

may have a certain relationship with the high temperature in 

summer. Model calibration fitting is good in each month in 

Hubei province. The low values of Debin Watson in Jingzhou 

indicate that there is a positive correlation among the predictors. 

R² is too low in several individual months. Compared with Henan 

Province, the SE value of Hubei Province is a little higher, that 

is, simulated values are slightly different from observed values. 

The calibration results of four meteorological stations in Hunan 

Province are better than those in Henan Province. The Debin 

Watson and R² of each station are relatively concentrated in 

Hunan Province. 

In addition, there are some differences in the prediction 

factors selected from each station, which indicates that differ- 

ent regions are affected by different climatic factors. The cali-  

 

 

 

Figure 2. Geographical location map of central China and selected meteorological stations (meteorological stations including 

Zhengzhou, Anyang, Nanyang and Gushi in Henan Province; Wuhan, Enshi, Fangxian and Jingzhou in Hubei Province; 

Nanyueyang, Yuanling, Wugang and Chenzhou in Hubei Province). 
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Table 1. Calibration Result of Meteorological Station Model 

Site Name 
Durbin-

Watson 
R2 SE 

Zhengzhou 1.870 ~ 2.179 0.487 ~ 0.753 2.706 ~ 4.482 

Anyang 1.914 ~ 2.278 0.494 ~ 0.735 2.708 ~ 4.334 

Nanyang 1.823 ~ 2.171 0.538 ~ 0.745 2.550 ~ 4.118 

Gushi 1.689 ~ 2.126 0.553 ~ 0.768 2.610 ~ 4.294 

Wuhan 1.859 ~ 2.039 0.268 ~ 0.591 3.117 ~ 5.462 

Enshi 1.850 ~ 2.051 0.240 ~ 0.692 3.173 ~ 5.192 

Fangxian 1.742 ~ 2.043 0.379 ~ 0.706 2.980 ~ 4.713 

Jingzhou 1.597 ~ 1.982 0.364 ~ 0.669 2.973 ~ 5.388 

Yueyang 1.610 ~ 2.080 0.429 ~ 0.685 2.814 ~ 4.777 

Yuanling 1.608 ~ 2.090 0.425 ~ 0.685 2.872 ~ 4.812 

Wugang 1.740 ~ 2.085 0.349 ~ 0.695 2.989 ~ 4.764 

Chenzhou 1.834 ~ 2.092 0.242 ~ 0.691 3.155 ~ 5.200 

 

Table 2. Standard Deviation Table for Comparison of 

Projection and NCEP Observed Results by Site 

Site Name Standard Deviation (℃) R2 

Zhengzhou Henan 0.257 0.9312 

Anyang Henan 0.251 0.9337 

Nanyang Henan 0.310 0.9453 

Gushi Henan 0.321 0.9500 

Wuhan Hubei 0.322 0.9542 

Enshi Hubei 0.265 0.9379 

Fangxian Hubei 0.277 0.9385 

Jingzhou Hubei 0.349 0.9412 

Yueyang Hunan 0.395 0.9535 

Yuanling Hunan 0.298 0.9352 

Wugang Hunan 0.405 0.9307 

Chenzhou Hunan 0.521 0.9340 

 

Table 3. Projection Standard Deviation of Temperature for 

Each Site under CanESM2 Model 

Site Name Standard Deviation (℃) R2 

Zhengzhou Henan 0.221 0.9329 

Anyang Henan 0.217 0.9343 

Nanyang Henan 0.261 0.9480 

Gushi Henan 0.270 0.9512 

Wuhan Hubei 0.282 0.9543 

Enshi Hubei 0.227 0.9370 

Fangxian Hubei 0.242 0.9394 

Jingzhou Hubei 0.300 0.9387 

Yueyang Hunan 0.338 0.9538 

Yuanling Hunan 0.255 0.9344 

Wugang Hunan 0.350 0.9301 

Chenzhou Hunan 0.452 0.9351 

 

brated model is used to simulate the monthly mean temperatures 

from 1996 to 2005. The results are compared with the NCEP 

datasets. The fitted standard deviations for each site are shown 

in Table 1. The simulated monthly mean temperature is com- 

pared to the NCEP temperature to verify the degree of suitabil- 

ity of this NCEP reanalysis dataset in this model. This is the 

initial step in model input and the basis following the screening 

of predictors. As shown in Table 2, the simulation results of the 

developed model are relatively good, with annual standard de- 

viations of less than 0.55 °C and R2 greater than 0.90, demon- 

strating that it is appropriate to select the input model for this 

dataset. 

The calibrated model is then used to load the CanESM2 

model and predict the monthly mean temperature from 1981 to 

2010. The obtained standard deviation values and R2 of the 

monthly mean temperature at each station under this model 

during the simulation are shown in Table 3. The selection of 

CanESM2 mode and the selection of predictors for each site are 

appropriate, with standard deviations less than 0.50 °C and R2 

greater than 0.90. Therefore, from the above, it is feasible to 

input the NCEP reanalysis dataset and load the CanESM2 

mode for the next step for model simulation under RCP4.5 and 

RCP8.5 in CMIP5. The prediction results are more credible. 

5. Projection for Temperature Variations 

The results of monthly mean temperature changes at differ- 

ent time periods (i.e., 1981 ~ 1995,1996 ~ 2005, 2036 ~ 2065, 

and 2066 ~ 2095) obtained from 12 weather stations under two 

emission scenarios (i.e., RCP4.5 and RCP8.5) will be analyzed. 

First, the temperature trend chart of four meteorological stations 

in Henan Province is shown in Figure 3. According to Figure 3, 

temperature change trends of four stations in Henan Province 

are consistent, showing an increasing trend in spring and summer. 

However, the curve is relatively compact, that is, the tempera- 

ture change is small. The temperature change of Nanyang station 

in Henan province in May and October is more obvious under 

different scenarios. This indicates that the greenhouse gas emis- 

sions have a greater impact on the temperature of this region in 

these two months. Temperature in May and November at Gushi 

station in Henan are more significantly increased, showing a 

more obvious breakpoint change. These increases show that the 

temperature in this area is more sensitive to greenhouse gas 

emissions. 

The temperature trend change chart corresponding to the 

four weather stations in Hubei Province is shown in Figure 4. 

It can be seen from Figure 8 that the variation trend of Wuhan 

station is similar to those of the four stations in Henan Province. 

This may be due to the fact that all of them are in the plain area 

and have similar latitude, which makes the predictor have certain 

similarity in principle. Similarly, the most obvious change at 

Wuhan station was in November. The variation trends of Fang- 

xian station and Wuhan station in Hubei province are similar. 

The temperature increases in May are more obvious than other 

months. Its autumn and winter seasons show a continuous tem- 

perature increase, which means that the impact of greenhouse gas 

emissions on this area is continuous in time. The temperature in- 

creases in different months, while the impact range is smaller 

in summer.  

The change trends of Enshi station in Hubei province and 

Jingzhou station in Hubei province are similar, but slightly dif- 

ferent from Wuhan station and Fangxian station. It can be seen 

that in addition to the slight increase in May and the continuous  
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Figure 3. Trends of monthly mean temperature of four meteorological stations in Henan Province over six time periods under two 

scenarios; (a) ~ (d) is the Zhengzhou, Anyang, Nanyang, and Gushi site, respectively. 

 

increase in autumn and winter, the temperature of these two sta- 

tions decrease to a certain extent in July. From the point of view 

of greenhouse gas emission, its influence on the temperature of 

this area still exists and is continuous in time. However, due to 

the topography of mountainous hills and flourishing vegetation, 

it has a better cooling effect in the summer. In addition, its in- 

dustrialization and urbanization degree are much lower than 

those in Wuhan, which may be an important reason for decreas- 

ing temperature in summer. 

The temperature variation trend chart of four weather sta- 

tions in Hunan Province is shown in Figure 5. According to 

Figure 5, the temperature change of four weather stations in 

Hunan Province is more obvious than those in Henan Province. 

The change trend of Yueyang station is similar to that of Chen- 

zhou station in Hunan province. The main increase months are 

November and May, and the decrease range is not obvious in 

July. However, the Yueyang station is continued to warm up in 

winter, while Chenzhou station is continued to warm up in spring. 

The Yuanling station is mainly showed a significant warming 

trend in April and May. The overall warming trend of Wugang 

in Hunan Province is relatively obvious, but the temperature in- 

crease in May shows an explosive growth. On the basis of ex- 

cluding errors or model simulation errors, the analysis of this 

result may be because the latitude of this station is low on the 

one hand; on the other hand, it can be seen that the greenhouse 

gas emissions have a more obvious effect on the temperature 

increase of each station in May. 

In general, it can be seen from Figure 3 to Figure 5 that the 

temperature changes of 12 stations showed a significant increas- 

ing trend in summer at different time periods, but a slight de- 

creasing trend in winter. In summer, the temperature of each site 

is increased under the RCP4.5 scenario, and the increase is higher 

from 2066 to 2095 than from 2036 to 2065; The temperature is 

also showed an increasing trend under the RCP8.5 scenario. The 

increase from 2036 to 2065 under this scenario is basically equiv- 

alent to the increase from 2066 to 2095 under the RCP4.5 sce- 

nario, while the increase is greater from 2066 to 2095 under 

RCP8.5. In winter, the decreasing trend of temperature is the 

same as the increasing trend in summer, that is, it shows the de- 

creasing results of RCP4.5 from 2036 to 2065, RCP8.5 from 

2036 to 2065, RCP4.5 from 2066 to 2095, and RCP8.5 from 

2066 to 2095. 

The projection temperatures obtained from the two sce- 

narios of RCP4.5 and RCP8.5 for the next two time periods of 

2036 to 2065 and 2066 to 2095 are subtracted from the simulated 

temperatures obtained from the model for the corresponding sta- 

tions from 1981 to 1995 in order to obtain increases and de- 

creases of the four stations in each province at different times 

and months under the two scenarios. Figure 6 shows monthly 

mean temperature changes of four stations in Henan Province 
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from 1981 to 1995. After analyzing the increasing trend, it can 

be seen that the average temperature in February at all four 

stations has decreased to some extent. Specifically, the winter 

temperature is lower, which also means that the duration of ex- 

treme events (i.e., cold wave) may increase. In particular, the 

temperature changes in Zhengzhou and Anyang in Henan 

Province generally show a smaller increase, while the winter 

decrease are more obvious. However, the Nanyang and Gushi 

stations increase more significantly in the spring and winter. 

This may be more related to latitudinal location. The relatively 

high latitudes of Zhengzhou and Anyang make them receive 

relatively less light and lower temperature. Nanyang and Gushi 

stations not only receive more heat, but also are affected by the 

insulation effect of greenhouse gases. 

The histogram of monthly average temperature increases 

and decreases at each site in Hubei Province is shown in Figure 

7. According to Figure 7, Changes in Wuhan are similar to those 

in Hunan Province, showing a cooling in February and July. In 

addition to that, the cooling in July is particularly obvious in 

Enshi, Hubei Province and Jingzhou. The winter in Fangxian 

County still shows a warming trend, but the July and August in 

summer slightly cool down. Figure 8 shows temperature changes 

at each station in Hunan Province. Overall, the average monthly 

temperature of each station in Hunan Province generally shows 

a warming trend, and the range of changes is more obvious, 

especially in April, May, and June of spring. Temperature in 

autumn is also slightly warmed, while the corresponding cooling 

in winter is not obvious. Yuanling shows a trend of warming 

throughout the year. Due to the large warming values in May, the 

longitudinal coordinate axis of the histogram of Wugang in 

Hunan Province has been adjusted to some extent. In addition, it 

also shows an obvious warming tendency in spring and autumn, 

However, the warming in summer is not significant, and there is 

no cooling trend in winter.  

From Figures 6 to 8, the 12 weather stations show in- 

creases in temperature for most months, while some of them 

show a relative decrease in temperature in February, March, and 

July. The magnitude of temperature changes increases with time 

periods and GHG emissions, which is consistent with the trend 

chart above. Among them, under the RCP4.5 scenario, Henan 

Province increases by a maximum of 3.31 °C in May of Gushi, 

followed by 2.88 °C in November of Gushi. Henan Provice de- 

creases by a maximum of 0.96 °C in February of Anyang; Hu- 

bei Province increases by a maximum of 4.12 °C in November 

of Jingzhou and decreases by a maximum of 1.64 °C in July of 

Jingzhou; Hunan Province increases by a maximum of 4.14 °C 

in November of Yueyang and a maximum of 0.30 °C in Febru- 

ary of Chenzhou. The general trend of temperature reduction  

 

 

 

Figure 4. Trends of monthly mean temperature of four meteorological stations in Hubei Province over six time periods under two 

scenarios; (a) ~ (d) is the Wuhan, Enshi, Fangxian, and Jingzhou site, respectively. 
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Figure 5. Trends of monthly mean temperature of four meteorological stations in Hunan Province over six time periods under two 

scenarios; (a) ~ (d) is the Yueyang, Yuanling, Wugang, and Chenzhou site, respectively. 

 

 

 

Figure 6. Increase and decrease of monthly mean temperature change of four meteorological stations in Henan Province in four time 

periods under two scenarios; (a) ~ (d) is the Zhengzhou, Anyang, Nanyang, and Gushi site, respectively. 
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Figure 7. Increase and decrease of monthly mean temperature change of four meteorological stations in Hubei Province in four 

time periods under two scenarios; (a) ~ (d) is the Wuhan, Enshi, Fangxian, and Jingzhou site, respectively. 

 

 

 

Figure 8. Increase and decrease of monthly mean temperature change of four meteorological stations in Hunan Province in four 

time periods under two scenarios; (a) ~ (d) is the Yueyang, Yuanling, Wugang, and Chenzhou site, respectively. 
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was not significant. 

Under the RCP8.5 scenario, the largest increase in Henan 

Province is 4.76 °C in May Gushi, followed by 3.77 °C in Novem- 

ber Gushi; The largest increase in Hubei Province is 4.87 °C in 

November Jingzhou, with the largest decrease of 3.14 °C in July 

Jingzhou; The largest increase in Hunan Province is 5.34 °C in 

April Chenzhou, with the largest decrease of 0.59 °C in Febru- 

ary Chenzhou. In addition, the increase in May at Wugang site 

in Hunan is significant and much higher than that at other sites 

during the same period, with an increase as high as 14.17 °C 

under the RCP8.5 scenario. Yuanling station in Hunan Province 

shows a trend of increasing temperature throughout the year, 

even in winter. 

After averaging the monthly average temperature changes 

in the two time periods under RCP4.5 and RCP8.5, the average 

increase values per month are presented in Figure 9. The data 

presented in this figure are the results obtained by arithmetic 

mean of changes in mean temperature for each month at each 

station in Figures 6 to 8. This process loses some of the lower 

winter temperature values, but the final results reflect the trend 

of RCP4.5 and RCP8.5 for future temperature increases. As can 

be seen from Figure 9, overall future temperatures tend to in- 

crease with enlarged greenhouse gas emissions. The increases 

under the RCP8.5 scenario are more significant than those under 

RCP4.5 scenario in the same period. It is indicated that green- 

house gas emission concentration has a greater impact on tem- 

perature than time periods.  

In addition, the range of temperature increase is similar in 

the same latitude area, such as Wuhan, Enshi, Jingzhou and 

Yyueyang stations. Secondly, it can be concluded that the lower 

the latitude, the greater the temperature increase; The largest of 

increase is the Wugang station in Hunan province. This sug- 

gests that the low latitude region not only has a higher base tem- 

perature, but also can maintain more heat under the addition of 

greenhouse gases, making the regional temperature remain high. 

First, the temperature estimation results of the three provinces 

under the time change increased slightly from 2036 to 2065, in- 

creased more significantly from 2066 to 2095, and increased 

more significantly than the previous time period. This should 

be due to the gradual accumulation of greenhouse gases over 

time. On the other hand, the temperature change of three provinces 

under RCP8.5 scenario also showed a significant upward trend. 

The increase from 2036 to 2065 was slightly lower than that from 

2066 to 2095 under the RCP4.5 scenario, while the increase from 

2066 to 2095 increased further, basically reaching a 60-year time 

increase equivalent to the temperature change value of the 1.5-

century time span from the middle of the nineteenth century to 

the beginning of the twenty-first century. Thus, the temperature 

rise was more pronounced in the RCP8.5 scenario compared to 

the RCP4.5 scenario, which demonstrates that more GHG emis- 

sions have a significant effect on the trend of temperature rise 

and are positively correlated. 

From the changes in each month, it can be found that the 

increase in summer is not obvious or even shows a decrease 

phenomenon. It is indicated that the high temperature is also a 

certain upper limit. According to the estimation results within  

 

 

Figure 9. Average monthly increase and decrease temperature 

plots for the two time periods under RCP4.5 and RCP8.5 

scenarios. 

 

one hundred years, the monthly average temperature of each prov- 

ince is the highest value. In contrast, the increase is significant 

in March, April and May in spring and autumn, which indicates 

that the effect of greenhouse gas emissions on temperature rise 

is not completely reflected in the highest temperature. In addi- 

tion, more of them are acted in the state of high temperature for 

a long time. In this respect, extreme value analysis of the results 

is highly desirable. 

Among the three provinces, Hunan Province has the largest 

increase, which suggests that latitude is also crucial for the effect 

of temperature. The temperature change in Henan Province is not 

only reflected in the increase in summer, but also reflected in the 

decrease in winter. This may be related to the population growth 

and economic development of Henan Province. More popular- 

tion accommodation will lead to more economic development 

needs and environmental bearing damages. Because there are 

many rivers and lakes in Hubei province, the relative humidity 

in the atmosphere and the water circulation promotes the tem- 

perature change to maintain a relatively stable state. On the 

other hand, the topography in southwest China is mainly moun- 

tainous and hilly. Specifically, the topography changes greatly, 
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and the temperature changes linearly with altitude. Therefore, 

the changes of Enshi station in Hubei province are slightly dif- 

ferent from those in the other three stations in each month. 

The maximum increase in Hubei Province under the RCP4.5 

scenario is similar to that in Hunan Province. The maximum 

increase in Hubei Province under the RCP8.5 scenario is similar 

to that in Henan Province. In other words, Henan Province and 

Hunan Province are more sensitive to the impact of scenario 

changes, while Hubei Province is relatively less affected. This 

may be due to the results of the combined action of similar lati- 

tudinal intervals and domestic hydrology, or GHG emissions 

reach a peak or achieve a balance to a certain extent. 

6. Extreme Events Analysis 

Through the extreme value analysis of the temperature 

change prediction results, the average annual days of possible 

heat wave events at 12 stations under different scenarios and 

time periods are shown in Figure 10. It can be seen that, as far 

as the scenario is concerned, the number of days of heat waves 

under the RCP8.5 scenario is longer than that under the RCP4.5 

scenario. As far as the provinces are concerned, Hunan Province 

has the longest average annual number of days of heat waves, 

followed by Hubei Province. Under the RCP4.5 scenario, the 

maximum heat wave days were 64.2 days in Gushi, 81.3 days 

in Wuhan, and 112.3 days in Yueyang. Under RCP8.5 scenario, 

the maximum number of heat wave days was 90.9 days in Gushi, 

92.9 days in Wuhan, and 130.3 days in Yueyang. From the above 

results and trends, it can be seen that the number of days of heat 

waves is closely related to the temperature projections. 

 

 

 

Figure 10. Average annual days of high temperature heat 

waves under different scenarios at each station. 

 

In Figures 3 and 4, the temperature increasing trend of 

Gushi station in Henan province is obvious, while the trend of 

Enshi station in Hubei province is smooth. This is consistent 

with the probability analysis. On the whole, Hunan Province has 

the largest average heat wave days, which is consistent with the 

temperature projections. However, there are slight differences 

among stations. This suggests that in addition to the effect of tem- 

perature, the latitude factor is more important for the effect of 

heat wave duration days.  

In addition, the difference of heat wave days between sta- 

tions may be related to topography and landform. For example, 

Wuhan and Yueyang are not the largest in temperature changes, 

but the days of heat wave are the longest. One reason is that 

their own temperature basis is high, and the circulation of urban 

heat island in first-tier cities will cause extreme weather such 

as heat wave due to the difficulty in lowering the temperature. 

7. Conclusions 

In summary, the future temperature in central China shows 

a gradually increasing trend from 2036 to 2065 and 2066 to 

2095. Temperature under RCP8.5 shows a greater increase in 

temperature compared to the RCP4.5 scenario. The average an- 

nual duration of heat waves is 74.7 days. Details are listed as 

follows: (1) Future temperature in Central China shows an over- 

all increasing trend from 2036 to 2065 and 2066 to 2095, which 

suggests that impacts of greenhouse gas emissions are continuous 

and cumulative. (2) Future temperature in Central China will in- 

crease in the future under both RCP4.5 and RCP8.5, while the 

increase under RCP8.5 will be greater. Among all the provinces 

in Central China, Hunan Province has the largest increase, fol- 

lowed by Hubei Province, and Henan Province is the last. This 

suggests that more greenhouse gas emissions will lead to a more 

rapid increase in temperature, and the latitude factor is one of 

the crucial factors in temperature variation. (3) The duration of 

heat waves from 2035 to 2095 is 56.9 days, 69.4 days, and 98.0 

days for Henan Province, Hubei Province, and Hunan Province, 

respectively. This is consistent with the results of temperature 

increase, indicating that high temperature and latitude are im- 

portant factors for heat waves. 

The main innovation of this study is the development of a 

coupled model of stepwise regression analysis, statistical down- 

scaling model, and extreme value analysis, i.e., SRSD model. 

On the one hand, this model can solve the problem of screening 

and predicting factors in the process of statistical downscaling. 

On the other hand, it makes up for the lost data in the statistical 

downscaling method through the SDSM model. Applying the 

model to the predictions of extreme heat waves provides sub- 

stantial guiding significance for the disaster prevention policy 

of Central China. It also provides the theoretical basis for the 

implementation of clean production policies and the optimiza- 

tion of industrial structure in the region. 

It is necessary to introduce and implement policies to curb 

greenhouse gas emissions, which can effectively help to alleviate 

environmental disruption and control temperature increases. In 

addition, as the geographical and social environment varies in 

different provinces, the implementation of policies should be 

considered in combination with local conditions to promote their 

development. It is also necessary to prevent extreme heat waves. 

Measures such as afforestation to combat soil erosion and pro- 
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mote water circulation, regulating reservoir storage, and indus- 

trial restructuring into cleaner production can have an effect on 

shortening the duration of heat waves.  

In this study, there are several limitations. Due to the re- 

stricted number of GCM model and RCP scenario, comparison 

of the fit among multiple simulations is not allowed. In addition, 

the evaluation index of heat waves is relatively single, which is 

not sufficient enough. In the analysis of heat waves, the daily 

average temperature is used rather than the daily maximum tem- 

perature, which leads to fewer heat wave days compared with 

observed data. 
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