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ABSTRACT. Bi-level programming problem (BLPP) could affect the final decision; its result is a mutually coordinated scheme among 

all layers and can help solve complex practical problems. Methods to solve the BLPP have been summarized and described in this paper. 

A fuzzy method was applied to solve the BLPP by using the concept of coupled membership function for multi-objective optimization 

programming. In addition, a numerical example has been employed to show the calculation processes. It is also proposed that the future 

research direction is the solution of fuzzy optimization problems in multi-level programming problems. 
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1. Introduction 

The previous bilevel programming (BP) method with two-

level structure was developed to reflect the trade-off between 

two decision levels with different objectives (Camacho, 2015). 

When solving BP programming, the leader-follower decision 

strategy is introduced into the algorithm optimization process, 

so as to achieve the optimal solution that is satisfactory to two 

levels Decision Makers (DMs). Different decision management 

systems usually have their own starting pointswhen dealing 

with some system problems, so sometimes the ideal solutions 

will conflict. In previous studies, it can be learned that in ad- 

dition to effectively balancing DMs requirements at different 

levels, the limitations of BP algorithm will be reflected in set- 

ting system parameters. Therefore, the research direction can 

be aimed at solving the uncertainty in the system by combining 

bi-level programming, fuzzy numbers and interval numbers, and 

using accurate and appropriate algorithms. The fuzzy and inter- 

val numbers are transformed into explicit values, so as to ac- 

quire an effective optimization scheme (Ma et al., 2017).  

Scholars have proposed many methods to solve multi-level 

programming problem (MLPP). The majority of them are con- 

cepttual approaches to vertex enumeration and transformation. 

The vertex enumerationr is to find the control variable with a 

higher level of compromise point using the adjusted simplex al- 

gorithm. For some large planning problems, it is less efficient 

and will lose generality. The latter involves modifying the pro- 

gramming problem condition or penalty function of the upper-

level constraint constructed by Kuhn-Tucker (K-T) at the lower 

level. Because nonlinearities or Lagrangian terms appear in the 
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constraints, the auxiliary problem becomes complex and some- 

times unmanageable. 

Aiming at the problem of low computational efficiency of 

the existing methods, this paper proposes a fuzzy method to 

solve the above problems by using the membership functions 

are coupled into multi-objective optimization.Solution search 

depends on membership function changes that represent the 

satisfaction of possible solutions to the decision of two levels, 

rather than vertex enumeration, and does not generate higher-

order constraints.We do not assume that optimal solutions exist 

at corner points, in contrast to vertex enumeration. Due to the 

difficulty of defining a reliable optimality in multi-person deci- 

sion making processes, and limiting potential solutions to corner 

points is by definition a problem, we believe that the notion of 

satisfaction is more acceptable than optimality. In the nondomi- 

nated region, there may be potential solutions that are satisfac- 

tory. Therefore, it is very efficient, and increases the original 

problem's complexity in no way (Bard, 1983), Wen and Hsu’s 

bicriteria algorithm (Wen and Hsu, 1989) and the two-stage 

method (Wen and Hsu, 1992) are used to solve the auxiliary MLPP. 

Hence, this paper discusses how to solve bi-level program- 

ming problems (BLPP) using fuzzy methods. The article first 

describes the method used before. The Kth-best approach is 

discussed in part 2 and the fuzzy concepts and methods are 

applied to solve the BLPP. An example of the proposed method 

is provided in the paper in order to demonstrate it, and com- 

pares it with the classical solution. The final section concludes 

with comments and future research directions. 

2. Methodology 

2.1. The Traditional Method 

The idea of bi-level programming is a mathematical model 

of optimization in which problems at different levels have their 

own objective functions and constraints, and there are two levels 
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of hierarchical structure. Upper-level decision variables determine 

the objective function and constraints in upper-level planning, 

but they are also constrained by the lower-level planning’s opti- 

mal solution, which is affected and constrained by the upper-

level decision variables. It can simultaneously consider the in- 

terests of both the global and the individual, ensuring that the 

global is first and the local is second. Then the final plan to 

solve complex practical problems is often the result of the mu- 

tual coordination of the two levels of goal planning (Lv, 2009). 

To solve these constrained multi-level programming prob- 

lems, Basar and Olsder (1982) proposed the Kth-best algorithm: 

Method First, we search for the individual optimal solution in 

the upper DM. As long as the solution is compatible with the 

optimal solution found in the lower DM, we obtain an optimal 

solution. Searching continues until the upper DM and lower DM 

optimal solutions match each other if there is no match between 

the two corners (extreme values) of the previous point. In the 

process of solving this algorithm, we can see an implicit com- 

promise process. The DM in the upper layer reduces its own 

objective value to make a compromise for the optimal solution 

of the DM in the lower layer. As a last example, we consider 

an extreme case in which two independent optimal solutions of 

two DMS are located at two adjacent vertices. When the Kth-

best algorithm is applied, it will force its solution to be one of 

them, and then the DM acting first will dominate the optimal 

solution. (Jenkins and Passino, 1999). Since the conflict is not 

yet resolved, the Kth-best solution seems to make little sense. 

It is more urgent to find a solution to these two extremes. This 

conflict phenomenon is reflected in many problems. The basic 

idea of the Kth-best algorithm is that the optimal points must 

exist between the corners, and the search of the corners leads 

to a complex enumeration process. There is difficulty defining 

a reliable optimality for multi-person decision problems. Even 

in non-cooperative phenomena, compromise or coordination is 

usually required in order to reach a solution. 

Kth-best algorithms have a slow convergence rate when they 

are applied to large-scale problems, as they have to search a large 

number of vertices at once. DMs are unaware of the levels of re- 

lationships and the possible effects of individual actions, that 

is, there is a lack of clear information especially about the ob- 

jectives for each DM’s achievement. Secondly, the program 

shows that the rate of return always occurs in the upper DM, 

while lowering the DM lets some profit when exploiting the 

previous loss, that is, decreasing the order from above is best if 

the low level is not satisfactory. Even in a decentralized organi- 

zation, non-dominant solutions may be more appropriate than 

classical ones. A non-angular, non-dominated solution may be 

better in this case, since it avoids the computational difficulties 

caused by enumeration. The Kth-Best solution is dominant in 

many other cases and thus is not very attractive to any DM, 

particularly in practice. 

2.2. Fuzzy Approach for BLPP 

Shih (1996) proposed an algorithm for supervised search 

(supervised by the top-level DM) that could help produce (non-

dominated) satisfactory solutions to the multilevel planning pro- 

blem. This paper applies the method of the literature to solve 

the multi-level programming, and lists the fuzzy algorithms of 

bi-level programming separately. The upper DMs specify pref- 

erences with some leeway for control variables and objectives 

in this solution process. Fuzzy set theory models this informa- 

tion as a membership function and passes it to the subordinate 

DM as an additional constraint. The goals of lower-level DMs 

need to be optimized not only for themselves, but also satisfy 

the goals and preferences of higher-level decision makers as 

much as possible. Without careful consideration of the goals and 

preferences at the top level, the proposed solution is likely to 

be rejected and the search for a solution will be a lengthy pro- 

cess. If the upper DM agrees with the lower DM's proposed so- 

lution, then the lower DM has reached a satisfactory solution. 

This proposal will need to be reevaluated and changed if rejected, 

as well as any corresponding margins or tolerances, until a sat- 

isfactory outcome can be reached. This strategy does not violate 

the noncooperative property, where the two-level decision sys- 

tem first seeks its own optimal solution in isolation. It does, how- 

ever, necessitate some collaboration with traditional methods. 

The DM at the higher level first resolves the following 

issue mathematically: 

 

1 1 2 11 1 12 2Max  ( , )f x x c x c x= +  (1a) 

 

s.t.  1 2 2 1 2 1 1 2 2 1 1 2( , ) ( , ) 0x x F x x A x A x b x and x = +    (1b) 

 

(x1
U, x2

U, f1
U) is assumed to be the solution, and the lower-

level DM solves these problems independently: 

 

2 1 2 21 1 22 2Max  ( , )f x x c x c x= +
 (2a) 

 

s.t.  1 2 2 1 2 1 1 2 2 1 1 2( , ) ( , ) 0x x F x x A x A x b x and x = +    (2b) 

 

Solution is assumed to be (x1
L, x2

L, f2
L). The above solu- 

tions are then disclosed to both DMs. If (x1
U, x2

U) = (x1
L, x2

L), 

we arrive at an optimal solution. In general, two solutions differ 

due to conflicts in nature between the two objective perspec- 

tives. It is obvious that the upper-level DM cannot use the opti- 

mal decision x1
U to control the lower-level DM. It makes more 

sense to provide for some flexibility or tolerances that give 

lower-level DMs a larger viable domain to find their ideal an- 

swer and that significantly cut down on the amount of time or 

iterations required to accomplish so. On x1, the decision range 

should be “around x1
U with its maximum tolerances P1”. x1

U is 

the most preferred decision; a decision at x1
U – P1 and x1

U + P1 

is the worst possible one; a linear increase in satisfaction or pref- 

erence within [x1
U – P1, x1

U] and a linear decrease within [x1
U + 

P1, x1
U] can be observed; other decisions are not acceptable. In 

fuzzy set theory, these membership functions can be formulated 

as follows (Zhang et al., 2019): 

 

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

( ) / ,

( ) ( ) / ,

0,

U U U

U U U

x

x x P P    if x P x x

x x P x P    if x x x P

                                otherwise



  − − −    
 
 = + − −  +  
 
  

 (3) 
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It is also depicted in Figure 1. At the same time, it is 

important for the upper DM to be tolerant enough to the lower 

DM to be clear about its goals in order to guide or supervise the 

lower DM in the right direction to find a solution. In general, 

an upper-level DM can legitimately take into account that pref- 

erence inside [f1’, f1
U] is lin- early growing, all f1 ≥ f1

U are ab- 

solutely acceptable, and all f1 < f1’ [=f1(x1
L, x2

L)] are completely 

unacceptable. Since the lower-level DM obtained the optimal 

value at (x1
L, x2

L) and then gave the upper-level DM the ob- 

jective value of f1’, any f1 < f1’ is unattractive. In this case, it is 

reasonable to assume the fol- lowing member function: 

 

1

1 1

1 1
1 1 1 1 1

1 1

1 1

1, ( )

( ) '
[ ( )] , ' ( )

'

0, ( )

U

U

f U

                    if f x f

f x f
f x    if f f x f

f f

                  if f x f



 
 

− 
=   

− 
  

 (4) 

 

Figure 1 illustrates this as well. In the lower-level DM, the 

objective is optimized under “x1 is about x1U” constraints and 

“There is some way in which f1 is nearer or greater than f1U” 

which are modeled by the membership functions (3) and (4). 

As a result of model (5) or (6), the lower-level DM obtains the 

following problem (Lai and Hwang, 1993): 

 

2

2 1 2 21 1 22 2Max ( , )
x

f x x c x c x= +  (5a) 

 

subject to: 
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 (5b) 

 

2

2 1 2 21 1 22 2Max ( , )
x

f x x c x c x= +  (6a) 

 

subject to: 

 

1

1

1 1 2 2

1

1

1 2

,

( ) ,

[ ( )] ,

0,

[0,1] [0,1]

x

f
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 (6b) 

 

Accordingly, α (a row vector) represents the minimum 

acceptable degree of satisfaction or preference for the decision 

x1, and β represents the minimum acceptable degree of prefer- 

ence for the objective; I has the same size as µx1(x1) or x1 and is 

a column vector whose members are all equal to 1. The feasible 

ranges constrained by µx1(x1) ≥ α and µf1[f1(x)] ≥ β are depicted 

in Figure 1. Lower-level DMs are obviously capable of analyzing 

various solutions that satisfy upper-level DMs’ satisfactory lev- 

els α and β. 

For each possible solution available to the upper-level 

DMs, the lower-level DMs may be willing to build a member- 

ship function for the objective so that they can rate the satisfac- 

tion of each potential solution. Here, assume that the lower-

level DMs have the following membership function for the goal: 

 

2
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2 2 2 2
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'
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U

U
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− 
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          (7) 

 

where f2’ = f2(x1
T). As can be seen, μ represents a one-to-one 

mapping within the compact intervalf2
L and f2’. Because f2

L is 

the best solution of (6), f2(x1) > f2
L is impossible, while the upper-

level DM gives more constraints to the lower-level DM. The 

lower-level DM will not accept any f2(x) > f2’ for the same 

reason as the upper-level DM, discussed above. Therefore, the 

lower-level DM has μf2[f2(x)] = [f2(x) – f2’] / [f2
U – f2’] and the 

following auxiliary model (8) or (9): 
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 (9b) 

 

where δ is the satisfactory degree of the lower-level DM who 

searches for a solution with a higher δ value under the conside- 

ration of α and β values.  

To resolve conflict between both DMs and to avoid the 

upper-level DM’s rejection, the lower-level DM should try to 

maximize α, β, and δ simultaneously, that is: 

 

 Max , ,    (10a) 
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subject to: 

 

1

1

1 1 2 2

1

1

2 2

1 2

,

( ) ,

[ ( )] ,

[ ( )] ,

0,

[0,1] [0,1]

x

f

f

A x A x b

x I

f x

f x

x and x

and

 

 

 

 

+ 









 

 (10b) 

 

 
 

Figure 1. The membership functions for x1 and f1. 

 

If the min operator is used to aggregate the satisfactory 

levels or λ = min {α, β, δ}, the above problem will be expressed 

by model (11) or (12): 
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 (12b) 

According to the application of Bellman and max-min deci- 

sions, there is a fuzzy max-min programming problem in model 

(9) (Ren and Zhang, 2018). 

As long as model (9) gives a satisfactory solution to the 

upper DM’s, the scheme is solved. In other cases, they should 

provide a new membership function that adds constraints to the 

objectives and control variables until a mutually satisfactory out- 

come is reached. The solution obtained by combining the control 

decision set and the objective with tolerance is a satisfactory 

solution. 

The linear (and triangular) form is chosen for its computa- 

tional efficiency since many nonlinear functions can be trans- 

formed into equivalent linear forms by variable transformation. 

So it is without loss of generality to discuss only the linear form 

in this paper. In fact, membership functions are indispensable 

when applying fuzzy methods in problem solving. In order to 

determine a membership function, heuristics are applied, relia- 

bility concerns are taken into account, and theoretical require- 

ments are considered. In this study, we will not discuss various 

methods and functional forms for generating membership func- 

tions. Lai and Hwang have provided a concise discussion of these 

related topics (Lai and Hwang, 1993). 

3. The Numerical Example 

We demonstrate the proposed method with the following 

example. An export-oriented country concentrates on the pro- 

duction of two important products 1 and 2, which are manufac- 

tured by firms with some capacity. The profit is $1 per unit for 

product 1 and $2 per unit for product 2. Product 1 can be ex- 

ported, earning $2 per unit from abroad, while product 2 needs 

to import raw materials at $1 per unit. There are two levels of 

DMs associated with this situation, the government (superior) 

and the company manager (subordinate), each of whom can only 

deal with one decision variable, x1 and x2, respectively. There 

are two objectives: (i) maximum exports, f1(x), and (ii) maximum 

profit on the product, f2(x). Therefore, we can formulate the pro- 

blem as follows: 

 

1

1 1 2Max 2  ( )
x

f x x effect on the export trade= −  (13) 

 

where x2 solves: 

 

2

2 1 2Max 2  ( )
x

f x x profit on the products= +  (14a) 
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where constraint set is denoted by X. The Kth-best solution is 

(x1, x2) = (8, 3) at K = 2. In addition, the optimum for the upper-

level objective is f1 = 13.5 at (7.5, 1.5) and for the lower-level 

objective is f2 = 21 at (3, 9). The decision variable and objective 

function spaces are shown in Figure 2. 

The proposed approach first finds individual optimal so- 

lutions by solving Equations (5) and (6) to obtain (x1
U, x2

U) = 

(7.5, 1.5) and f1
U = 13.5 as well as x1

L, x2
L = (3, 9) and f1

L = 21. 

f1
T = 13.5 and let us assume f1’ = 0 (only positive is meaningful 

here) instead of –3 and f2’ = 10.5. Take the upper-level DM’s 

control decision x1 to be around 7.5, with positive and negative 

side tolerances of 4.5 and 0.5, respectively. By Equations (3), 

(4) and (6), membership functions µx1(.), µf1(.) and µf2(.) are 

built. The lower-level DM then solves the following problem 

of Equation (15): 

 

Max  (15a) 

 

subject to: 
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1

1 2

1 2

,
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 +

 −
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 (15b) 

 

whose compromise solution is f* = (f1
*, f2

*) = (9.29, 17.72) at x* 

= (7.26, 5.23) with the overall satisfaction of both DMs λ= 

0.69. Realized satisfactory levels are (µx1
*, µf1

*, µf2
*) = (0.95, 

0.69, 0.69). If the upper-level DM’s total satisfactory level λ1 = 

min {µx1
*, µf1

*}, then our solution provides λ1 = 0.69 and λ2 (of 

the lower-level DM) = 0.69. On the other hand, the Kth-best 

solution f = (13, 14) at x = (8, 3) has (µx1, µf1, µf2) = (0.0, 0.96, 

0.33) and thus λ1 = 0.0 and λ2 = 0.33. As far as satisfactions of 

both DMs are concerned, our solution is clearly better than the 

Kth-best. 

 

 
 

Figure 2. The objective function space for the example. 

4. Conclusions 

This paper summarizes and describes previously used bi-

level programming methods, applies a fuzzy approach to solving 

bi-level programming problems, and a numerical example is 

given to solve it, and concludes by offering recommendations 

for future research. The method applied in this paper to solve 

BLPP, in the search process does not rely on the enumeration 

of vertices. Instead, the model is solved by the change of mem- 

bership function. So even large-scale problems in life can be 

scaled with simple calculations. For nonlinear programming 

problems, this method has no great improvement, but at least it 

does not increase the order and make the problem more com- 

plicated. 

The above member functions and method calculations pro- 

vide satisfactory solutions, so the next research direction is 

mainly to explore a variety of functions and operators, so that 

different DMs can change the function form in the interaction 

algorithm discussed above to find the optimal solution; MLPP 

can therefore be solved with a complete decision support sys- 

tem. Multilevel programming problems involving nonlinear func- 

tions, integers, or mixed integers (nonlinear functions) can also 

be solved with this method. In multi-level programming prob- 

lems, there is often a lack of accuracy in the parameters or input 

data. Consequently, a useful and intriguing direction for future 

research is the development of techniques for handling fuzzy 

problems and novel concepts for tackling multilayer planning 

problems. 
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