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ABSTRACT. Evaluation of water pollution is a priority work nowadays. The signature of the waterbody reveals its excellence or me- 

diocrity and reflectance that can measure by a sensor used to analyse the health status of the waterbody. The remote sensing analysis has 

become the latest state of art technologies for monitoring large-scale waterbodies. High-resolution satellite data are now available to es- 

timate water pollution through various water quality parameters like clarity, chlorophyll, suspended solids, turbidity, temperature, salinity, 

organic matter, etc. In this review study, a special emphasise has been given to the various satellites like Landsat, sentinel, satellite pour 

l’Observation de la terre (SPOT), moderate resolution imaging spectroradiometer (MODIS), medium resolution imaging spectrometer 

(MERIS), Indian remote sensing satellites (IRS) and its application on water pollution. Availability of satellite data, algorithms, and mod- 

els to assess water quality has also been reviewed in detailed. The review suggests development and innovation in satellites, sensors and 

techniques to assess the non-optically active constituents of water quality for better understanding and management of water pollution. 
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1. Introduction 

Water is an essential resource among all-natural resources. 

In spite of 70% of the earth’s surface being covered by water, 

nearly 1.2 billion people live with chronic water shortages (UN- 

ESCO, 2017). Due to the drinking of unsafe water, 3.2 million 

children die every year (Dakkak, 2016). Waterbodies are get- 

ting polluted due to the discharge of sewage across the world 

(Nakate, 2019). Sewage pollution is considered a significant 

threat to human beings as well as the environment (Denchak, 

2018). Sewage is basically wastewater produced due to the use 

of water by human activities (UNESCO, 2017). Due to the grow- 

ing rate of demand for water, sewage generation and overall pol- 

lution load are also increasing across the world. Due to rapid ur- 

banization (Bhardwaj, 2005) and industrialization, the ocean, 

estuaries, river, lakes, ponds and other waterbodies are receiv- 

ing a huge load of sewage, and industrial effluent every day. 

Uncontrolled use of pesticides and fertilizer for agriculture prac- 

tices are also accountable for the deterioration of water quality 

(PERMACULTURE, 2017). Discharge of fertilizer residues in 

waterbody can increase the nutrient concentration and allows 

microbes to proliferate; as a result, waterbodies are facing a 

massive challenge in terms of eutrophication, algal growth, in- 

crease of disease-causing microorganisms (Nakate et al., 2018). 
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The poor condition of sanitation facilities has a major contri- 

bution to water pollution (WHO, 2022). Developing countries 

are facing enormous challenges in the management of sewage 

or industrial effluent (Dakkak, 2016). It is reported that in In- 

dia, 72,368 million litres (MLD) of sewage is used to generate 

per day, but only 22,963 MLD is being treated (CPCB, 2021). 

Untreated sewage is not only harmful to surface waterbody but 

it affects the groundwater also (CPCB, 2021). It is reported that 

75 ~ 80% of surface water is getting contamination by domestic 

sewage (CPCB, 2021). 

Remote sensing technology is an advanced technique to as- 

sess water quality efficiently. The water has certain physical, 

chemical, and biological characteristics that can address the 

quality of the water (Sagan et al., 2020). Water quality like clar- 

ity (similar to Secchi depth), chlorophyll concentration, sus- 

pended solids (SS)/sediment, coloured dissolved organic matter 

(CDOM), trophic status, sea surface temperature (SST), and sea 

surface salinity (SSS), etc. can be effectively assessed and mon- 

itored through the optical remote sensing. This technology also 

provides temporal data that is helpful to assess the periodic 

changes and spatial extent of contamination in the waterbody. 

Characteristics of waterbody can be measured based on their 

reflection in different spectral bands of the satellite. As certain 

pollutants react differently with the selective range of the elec- 

tromagnetic spectrum and produced significant signatures on 

satellite images have huge potential to study water pollution. 

Critical analysis of those signatures with the help of the state of 

software, algorithms, models, and field data can be helpful to 

identify the various parameters and their dynamics (Shirke et  
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al., 2016; Nakate et al., 2018). Several satellites with different 

resolution capacities are available to assess water pollution (Us- 

ali and Ismail, 2010; Morozov et al., 2015). Therefore, a review 

study has been carried out to understand the effectiveness of re- 

mote sensing techniques for the assessment of water pollution 

considering satellites, sensors, methods, equations, and algo- 

rithms. The procedure of the water quality assessment through 

remote sensing technique that has been reviewed, described 

through a suitable flowchart (Figure 1). 

 

 
Figure 1. Flow chart for assessment of water quality using 

remote sensing technique. 

2. Water Pollution Assessment and Remote Sensing 

To assess water pollution, physicochemical and biological 

parameters water quality indicators (Gholizadeh et al., 2016) are 

required to be checked. The traditional method of data collection 

is only possible for specific locations, while in the case of large-

scale studies, spatial and temporal information are difficult to 

collect and monitoring (Ritchie et al., 2003). There are some 

inadequacies related to traditional procedures: 

• The conventional methods are agitated and overlong as it 

takes time, and energy and is not cost-effective as well as 

incompetent to provide desired output considering the low 

level of accuracy. 

• Spatial-temporal analysis and trend assessment for quality 

checking of huge waterbodies and regional planning of wa- 

terbodies are inefficient by regular methods. 

• The routine sampling procedure is quite inadequate for in- 

accessible terrain. 

To avoid the above-said inadequacy, remote sensing anal- 

ysis is an effective tool for the assessment of water pollution 

(Gitelson et al., 1997). The remote sensing analysis have been 

flourished before few decades for monitoring and estimation of 

inland water quality (Gholizadeh et al., 2016; Shirke et al., 

2016). Coastal waterbodies can also monitor through multi-

spectral image analysis (Thiemann and Kaufmann 2000; Vijay 

et al., 2015). Spectral reflectance of wastewater effluent (Gitel- 

son et al., 1997; Ekercin, 2007) can be detected by a specific 

portion of the electromagnetic spectrum. In the present decade, 

satellites with high-resolution sensors with advanced techniques 

are available for assessment of the water quality (Ritchie et al., 

2003). Visible and near-infrared (NIR) bands of spectrum are 

widely used for water quality assessment. Even though remote 

sensing is a powerful technique for sewage pollution assess- 

ment, conventional data is necessary for validation and estab- 

lishing a relationship between satellite analysis and ground truth. 

The collaboration of remote sensing and traditional practice is 

more effective to monitor the pollution assessment study (Kal- 

lio et al., 2000). The probable benefits are described below: 

• Synoptic coverage of the waterbody can be made available 

for spatiotemporal investigation, change of detection, and 

trend analysis of the study area. 

• Harmonized view of the bulk of waterbodies and large wa- 

ter masses like bays, sea, and ocean. 

• Identification of the prime locations for a ground survey to 

carry out analysis and time management. 

3. Platform and Sensors for Water Quality 

Assessment 

Based on the remote sensing platforms, two major cate- 

gories of sensors are available, namely airborne and space-borne. 

Airborne sensors (airplanes, helicopters) are limited to aerial 

medium and space-borne sensors are carried out by satellites 

(Chuvieco, 2016). Although air-based sensor provides high-res- 

olution images, it is limited to a specific region, are expensive, 

can’t provide temporal data and availability depends on weather 

conditions (Chang and Clay, 2016). On the other hand, space-

based sensors provide images with synoptic coverage, and his- 

torical and temporal datasets (Roy et al., 2017). Satellite im- 

ages are stable and clear, can minimize field activities, cost-ef- 

fective. Some open source images are also available that could 

be effectively used for natural resources monitoring and man- 

agement purposes. In view of this, space-borne sensors are more 

beneficial compared to the air medium sensors, for estimation 

of water quality. The different platform-based sensors for water 

quality assessment are described in Table 1. 

4. Estimation of Water Quality Using Remote 

Sensing Technique 

Assessment of water pollution using remote sensing is a 

challenging task. Discharges of sewage, runoff of pesticides and 

fertilizer, and industrial effluent degrade the water quality (Gho- 

lizadeh et al., 2016). This process is involved investigating the 

physical, chemical, and biological parameters and quantification 

of the concentration of contamination with probable sources 

(Usali and Ismail, 2010). To evaluate the efficiency of remote 

sensing data for water quality (inland, estuary, and ocean) anal- 

ysis, various satellite data and their applicability to water pollu- 

tion study have been reviewed as follows. 

 

4.1. Landsat Series of Satellites 

The Landsat mission is one of the longest satellite programs 

that provide continuous data for the assessment of the aquatic 

environment (Waxter, 2014). Landsat images are calibrated and  
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Table 1. Air and Space-Borne Sensors for Water Quality Assessment 

Category Sensor Application 

Airborne 

 

Electronically scanning thinned-array 

radiometer 

SSS 

Two-dimensional electronically scanning 

thinned-array radiometer 

SSS 

Scanning low frequency microwave 

radiometer 

SSS 

Passive active L- and S-band sensor SSS and SST 

Space-borne High resolution Digital globe WorldView 1,2,4 Chlorophyll, turbidity, TSS,  

NOAA WorldView 3 Chlorophyll, turbidity 

GeoEye, IKONOS Turbidity 

Sentinel CDOM, chlorophyll 

SPOT Turbidity, suspended solids, total 

phosphate 

Moderate resolution Landsat 5(MSS & TM); 7(ETM+); 8(OLI, 

TRS) 

SST, chlorophyll, turbidity, salinity, 

suspended solids 

EO-1 (Hyperion, ALI) Chlorophyll 

Terra ASTER SST 

OceanSat CDOM, algalbloom, yellow substance, 

SST, wind speed, and atmospheric 

water vapour 

Regional/Country level 

resolution 

Terra MODIS Floating algae 

MERIS Chlorophyll, cynobacteria 

SeaWiFS Ocean colour, chlorophyll 

 

multispectral and it has 30 m of spatial resolution (moderate) and 

16 days of revisit capacity that makes them suitable for contin- 

ued analysis (Abbas et al., 2019). Landsat 4 and 5 have the- 

matic mapper (TM), 7 have enhanced thematic mapper (ETM) 

and 8 have operational land imager (OLI) and thermal infrared 

sensor (TIRS) that users can utilize for water quality assess- 

ment. The visible and infrared bands of the electromagnetic 

spectrum are mostly used to assess different water quality com- 

ponents (Barrett and Frazier, 2016). The Landsat series of satel- 

lites are worldwide used for water quality analysis since the past 

(Lim and Choi, 2015; Barrett and Frazier, 2016). Several studies 

have been carried out to evaluate the efficiency of remote sens- 

ing data on water quality assessment (Lim and Choi, 2015). The 

Landsat data has been recognised as one of the most frequent 

and efficient satellite images to monitor and analyse the water 

quality across the globe (Moges et al., 2017). The Landsat data 

are useful to assess different water quality parameters like tur- 

bidity, temperature, suspended solids, chlorophyll, coloured dis- 

solved organic matter (CDOM), phycocyanin, etc. (Lim and 

Choi, 2015; Sun et al., 2015). 

 

4.1.1. Temperature 

Temperature is one of the components of water quality that 

is highly influenced by land use surroundings (Poole and Ber- 

man, 2001) and it has a strong impact on aquatic life (McCul- 

lough et al., 2009). In oceanography, estimation of SST is a rou- 

tine work (Kilpatrick et al., 2001; Parkinson, 2003) that uses 

thermal remote sensing data. The SST is a crucial and influenc- 

ing climatic parameter (Minnet et al., 2019) that reflects the 

equilibrium between the hydrosphere and atmosphere (Ben- 

tamy et al., 2017). The pattern of SST is efficient to analyze the 

subsurface dynamics, thermal expression, surface momentum, 

etc. (Tandeo et al., 2014). Landsat data are significant for re- 

search studies on the modeling of SST in several ways it has 

two thermal bands, which are useful to create a multiband equa- 

tion and it has a high spatial resolution that offers an advanced 

way to monitor coastal and marine areas (Bayat and Hasanlou, 

2016). 

 

4.1.2. Sea Surface Salinity 

Salinity is one of the key parameters that reflect the density 

of the seawater and density has a strong influence on ocean 

currents. Salinity is also important for water balance, evapora- 

tion, ocean productivity, etc. Thus, frequent monitoring of SSS 

is necessary to understand the ocean’s circulation. Satellite re- 

mote sensing has the potential to monitor the SSS in an efficient 

manner. High-resolution (spatial and temporal) data are avail- 

able to assess the SSS across the globe. The Landsat series of 

satellite data are now been popular among researchers to esti- 

mate the salinity in the marine environment. 

 

4.1.3. Turbidity 

Turbidity is one of the optically active constituents of water 

quality. When lights interact with turbid water it is scattered and 

absorbed rather than transmittance. The presence of suspended 

materials and colloidal components in the water column makes 

the water turbid. Therefore, the concentration of turbidity in wa- 

ter depends on the amount of suspended particles present in the 

water sample. Literature shows that the use of the single band 

and band combinations has huge potential to monitor and as- 

sessment about turbidity. In the near and mid-infrared region  
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Table 2. Landsat Data and Water Quality Parameters with the Method 

Parameter Dataset Method Band/Index Reference 

Temperature Landsat 5, 7, 

8 

Split window method Band 10 and 11 Bayat and Hasanlou, 2016; Minnet et al., 2019; Meng 

and Cheng., 2019; Vanhellemont, 2020 

Salinity Landsat 5  Multiple linear 

regression 

B1, B2, B3, B4 and B5 Baban, 1993; Bonansea et al., 2015 

Turbidity Landsat 7 Linear regression −63.717 + 1587.8 × Band4 Hicks et al., 2013 

Landsat 5, 7, 

8 

Normalized difference 

turbidity index 

(Red band − Green band)/(Red 

band + Green band) 

Lacaux et al., 2007; Sharma et al., 2016; Wang et al., 

2013; Akbar et al., 2010 

Landsat 5 Ratio Ratio between blue and red 

bands 

Cox et al., 1998 

Landsat 5, 7 Single band  Green band 

Red band 

NIR bnad 

Khorram et al., 1991 

Norsaliza and Hasmadi, 2010 

Onderka, 2014 

Suspended 

solids 

Landsat 5 Multiple linear 

regression 

Band1, 2, 3,4, and 5 Baban, 1993, Alparslan et al., 2007 

Landsat 7 Linear regression −52.817 + 1449.4 × Band4 Hicks et al., 2013 

Landsat 5,7,8 Non-linear regression R(Red) ×0.99 + 0.8  Lobo et al., 2015 

CDOM Rt based model (quadratic equation) Description of equation  

aCDOM(440) = 2.7x2 − 6.14x + 4.19 x = Rt(650)/Rt(480) 

apparently here x = 

Rt(650)/Rt(480) if Rrs = Rt/π 

 

Alcântara et al., 2016 

Rrs based model (exponential) Description of equation  

aCDOM(440) = 40.75e − 2.463x x = Rrs Chen et al., 2017 

Rrs based model (power)   Description of Equation  

CDOM(440) = 3.346x − 2.193 x = Rrs(B3)/Rrs(B4) Chen et al., 2017 

Landsat 5 Multiple linear 

regression 

Blue Band Brezonik et al., 2005 

Chlorophyll Landsat 5, 7 Multiple linear 

regression 

B 1, 2, 3 and 4 Dekker and peters, 1993; Alparslan et al., 2007 

Landsat 5, 7 Linear mixture 

modelling 

B 1, 2, 3 Tyler et al., 2006 

Landsat 7 Genetic algorithm B 1, 4, 5 and 7 Chen et al., 2008 

Landsat 5 Radial basis function 

neural network models 

NA Panda et al., 2004 

Landsat 5, 7 Band ratio Green and red band Miksa et al., 2004; Hellweger et al., 2004; Mancino et 

al., 2009;  

Landsat 5, 7 Band ratio Green and blue band Sudheer et al., 2006; Turner, 2010 

Landsat 5, 7 Band ratio Blue and red band Han and Jordan, 2005; Mancino et al., 2009 

SDD Landsat 5 Multiple linear 

regression 

B 1, 2, 3 and 4 Baban 1993; Alparslan et al., 2007 

Landsat 5, 7 Linear mixed model B4, B4/B1 Bonansea et al., 2015 

Landsat 7 Linear regression −2.0298 + 2.7517 × ln(B:B3) -

0.6022 × ln(B1) 

Hicks et al., 2013 

 

absorption of lights is high based on the depth of the waterbody 

and the appearance of the waterbody on the image looks darker. 

The increasing organic matters in waterbody are responsible for 

the shifting of reflectance peak from green to the red band (tur- 

bid water). Assessment of water turbidity using remote sensing 

has been carried out by many researchers across the globe. It is 

reported that the reflectance of the red band is efficient to study 

the turbidity concentration in the waterbody. The Landsat se- 

ries of satellites have been highly recommended by researchers 

to assess turbidity. 

 

4.1.4. Suspended Solids 

The SS is the major component responsible for water tur- 

bidity. To monitor and assess the level of suspended solids and 

their seasonal variations researchers suggest a different remote 

sensing based methodology that could be beneficial for the as- 

sessment of SS from the water sample. 

 

4.1.5. Coloured Dissolved Organic Matter 

CDOM also called yellow substance is another optically 

active constituent of water quality (Chen et al., 2017). These or- 

ganic matters can absorb photons in ultra-violet (UV) and visi- 

ble range and plays a key role in the carbon cycle. This is also 

helpful to quantify the dissolved organic carbon (DOC) in the 

water sample. CDOM influences the water environment in sev- 

eral ways like water quality, carbon dynamics, and overall aquat- 
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Table 3. Sentinel Data and Water Quality Parameters with the Method 

Dataset Method Parameter Reference 

Sentinel-2 MSI and 

sentinel-3 OLCI 

Spectral analysis (water leaving 

radiance) along with in-situ 

measurement 

Suspended particulate matter 

(SPM) 

Salama et al., 2022 

Linear regression, radiometric 

matchup 

Chlorophyll-a Salama et al., 2022 

Linear regression Coloured dissolved organic 

matter (CDOM) 

Salama et al., 2022 

Sentinel-3 OLCI Water leaving radiance Total phytoplankton biomass https://sentinel.esa.int/web/sentinel/search   

Water leaving radiance Transparency  https://sentinel.esa.int/web/sentinel/search 

 

Table 4. SPOT Data and Water Quality Parameters with the Method 

Dataset Parameter Method Band/Index/Equation Reference 

SPOT Chlorophyll Genetic programming, ratio (Rrs(B4))/(ln(Rrs(B2) + Rrs(B3))) + 

ln(61.6), green and red band  

Chen, 2003, Yang et al., 

2011 

SPOT 5 COD, NH3-N, DO Support vector machine 

regression 

NA  Maier and Keller, 2018 

SPOT SDD ratio Green and red band Yang et al., 2011; 

Lathrop et al., 1989 

SPOT Turbidity and 

suspended solids  

Single band NIR Mohd Hasmadi and 

Norsaliza, 2010 

SPOT Total phosphorus Ratio Blue and green band and integration 

of red and green band 

Yang et al., 2011 

 

ic life. Using remote sensing techniques, researchers have devel- 

oped multiple algorithms to assess the CDOM in the water col- 

umn. There is an optical proxy method to estimate the CDOM, 

which used an absorption coefficient at 440 nanometres of elec- 

tromagnetic radiation (EMR). The Landsat data has been consid- 

ered for assessment of CDOM because of its mission continuity 

and comparatively higher spatial resolution. To retrieve the 

CDOM of remote sensing remote sensing irradiance reflectance 

(Rt) is required that calculated as the ratio between upwelling 

(Eu) and downwelling (Ed) irradiance. Apart from this model 

researchers have been developed a more efficient model that 

used remote sensing reflectance (Rrs) of band 3 and band 4 of 

Landsat 8. To calculate the Rrs a simple equation has been used 

that may be expressed as Rrs = Rt/π. Although retrieval of CDOM 

is now popular through proxy method literature showed useful 

using the single band or band ratio of Landsat satellite. 

 

4.1.6. Chlorophyll 

Chlorophyll is the photosynthesizic element, present in 

aquatic macrophytes, algal blooms, etc., that are considered as 

biological parameters of water quality. The presence of toxic 

algal bloom and macrophytes in waterbody could be responsible 

for the degradation of the aquatic environment and it can dis- 

turb anthropogenic activities (Han and Jordan, 2005). The over- 

growth of aquatic plants can clog the reservoir, reduce the navi- 

gability of the river, and quality disruption of any other water- 

bodies (Miksa et al., 2004). The remote sensing offers a com- 

prehensive way to monitor and assess the algae/microphytes. 

Multispectral datasets are very efficient to map the algal bloom 

and its temporal variation. There are bands and band ratio mod- 

els to effectively assess the chlorophyll concentration in the wa- 

terbody. Band ratios are important because they minimize the 

atmospheric, irradiance, and air-water impact on remote sens- 

ing data (Alparslan et al., 2007). The significant literature has 

been showed that chlorophyll can be strongly absorbed between 

blue and red band regions (0.450 ~ 0.475 µm) and reflectance 

is highest in the green to NIR region (0.550 ~ 0.700 µm). 

 

4.1.7. Secchi Disk Depth 

Secchi disk depth (SDD) refers to the clarity of the water. 

SDD is inversely related to turbidity and suspended solids. This 

is also useful to evaluate the relative nutrients and solids load- 

ing in the waterbodies (Hicks et al., 2013). SDD can reflect the 

trophic status of the waterbody. SDD is one of the optically ac- 

tive constituents of the waterbody that can measure through re- 

mote sensing techniques (Bonansea et al., 2015). After atmos- 

pheric correction of satellite data, it is useful to assess the SDD 

of the water environment. Researchers have demonstrated that 

the green band of Landsat thematic mapper (TM) and multispec- 

tral scanner (MSS) data are efficient to measure the SDD. The 

water quality parameters that could be retrieved using Landsat 

data, along with methods, equations, or algorithms are repre- 

sented in Table 2. 

 

4.2. Sentinel Satellite 

The Copernicus Sentinel-2 satellite is a polar satellite that 

aims to monitor the earth’s ecosystem. The Sentinel-2 was sent 

to space in 2014, which opened up a new door toward sustain- 

able environmental management in several ways (Salama et al., 

2022). The high resolution (spatial and temporal) of Sentinel 

data makes it adequate and efficient for monitoring of natural 

resources. Monitoring of inland waterbodies as well as the ma- 

https://www.frontiersin.org/people/u/102686
https://www.frontiersin.org/people/u/102686
https://www.frontiersin.org/people/u/102686
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rine environment is the major application of the Sentinel data 

(https://sentinel.esa.int/web/sentinel/thematic-areas/marine-m 

onitoring). The Sentinel-2 provides ocean colour data which is 

useful to understand the trophic status of the marine environ- 

ment and other pollutants like turbidity, suspended matters, or- 

ganic matter, etc. Monitoring of the marine environment in terms 

of marine safety, climate and seasonal forecasting, human inter- 

vention in the aquatic ecosystem, etc. could be studied using Sen- 

tinel-2 data (https://sentinel.esa.int/web/success-stories/-/coper 

nicus-sentinel-2-brings-students-together-for-an-online-remot 

e-sensing-course). Researchers across the globe highly recom- 

mended the Sentinel 2 data for water quality assessment. Multi- 

spectral imaging (MSI) data are used by the Polytechnic Insti- 

tute of Beja, Portugal, and AERES University of Netherland for 

the assessment of water qualities in inland waterbodies. Sentinel 

products are used for monitoring of harmful algae in the water 

environment. Time series analysis of cyanobacteria could also 

be done using Sentinel data. Sentinel-3 Ocean and Land Colour 

Instrument (OLCI) is another satellite data product that is spe- 

cially designed to monitor the aquatic environment, sea surface 

topography, climate, and ocean forecasting. The spatiotempo- 

ral variability in estuarine water is highly dynamic that could 

be assessed through Sentinel data (Hommersom et al., 2009; 

Nechad et al., 2015). The radiometric matchup between satellite 

products and in-situ data can address the accuracy of the water 

quality monitoring from space (Salama et al., 2022). Table 3 is 

showing the available parameters that could be assessed through 

Sentinel data. 

 

4.3. Satellite Pour l’Observation De La Terre 

The satellite pour i’observation de la terre (SPOT) is a se- 

ries of optical remote sensing satellites of the European space 

agency that provides high-resolution images with wide ground 

coverage. The major objective of this mission is to monitor the 

earth’s resources, human activities, forecast the climate, land 

environment as well as ocean ecosystem. The recent SPOT 7 

satellite provides very high spatial resolution (pan band 1.5 m, 

visible and near-infrared band 6 m) and near real-time im- 

ageries that are useful to assess the rapid response of earth sur- 

face features. SPOT satellite data are recognized for assessment 

of the water quality. Different parameters like chlorophyll (Yang 

et al., 2011), Secchi disk depth (Lathrop et al., 1991), turbidity, 

suspended solids (Mohd and Norsaliza, 2010), and total phos- 

phorus (Yang et al., 2011) that expressed the quality of the wa- 

terbody, could be assessed using SPOT satellite data. The utili- 

ty of SPOT data to assess the different water quality parameters 

along with methodology is represented in Table 4. 

 

4.4. Moderate Resolution Imaging Spectrometer 

The MODIS instrument is available in terra and aqua 

spacecraft and provides moderate resolution data which are 

very useful for monitoring natural resources (https://modis.gs- 

fc.nasa.gov/data/). It also provides ocean colour products that 

are produced by the ocean colour data processing system 

(OCDPS) and used for monitoring of the ocean environment. 

ocean colour data has wide application areas like SST, SSS, 

ocean colour (https://oceancolor.gsfc.nasa.gov/). MODIS data 

are also useful for the assessment, monitoring, and modeling of 

chlorophyll, suspended solids, turbidity, CDOM, etc (Wong et 

al., 2008; Schaeffer et al., 2015). The application of MODIS da- 

ta on water quality parameters has been summarised in Table 5. 

 

4.5. Medium Resolution Imaging Spectrometer 

The Medium Resolution Imaging Spectrometer (MERIS) 

is associated with the Envisat mission of the European space 

agency. Although, this spectrometer was specially designed for 

ocean colour monitoring now expanded its applicability to land 

and atmosphere (https://earth.esa.int/eogateway/instruments/m 

eris). MERIS data provides high spectral and radiometric reso- 

lution images that are useful for monitoring of open ocean and 

estuarine areas. Like other satellite/instruments, MERIS data are 

also useful to assess different water quality parameters (Mar- 

tinez et al., 2005) that are prescribed in Table 6. 

 

4.6. Indian Remote Sensing Satellites 

Indian remote sensing (IRS) series satellites were devel- 

oped and built by the Indian Space Research Organization 

(ISRO) to monitor natural resources (Chauhan et al., 1996). Ini- 

tially, the aim of the IRS series was to monitor land resources 

but IRS P4 or OceanSat-1 was designed to fulfill the data re- 

quirement of from marine environment (Das and Mohanty, 

2006). IRS series carries moderate to high resolution (Linear 

Imaging Self-Scanning Censors or LISS-I, II, III, IV; Wide-

Field Sensor or WiFS; Advanced Wide-Field Sensor or AWiFS 

and Panchromatic or PAN sensors (https://www.ioccg.org/repo 

rts/ocm/ocm.html) that are useful to monitor and analyse the 

natural resources at the different sale (regional, country-level, 

etc.). The LISS IV is one of the high-resolution sensors having 

applicability in the assessment of the water environment (Sata- 

pathy et al., 2010). Shirke et al. (2016) used IRS LISS IV prod- 

uct to assess the sewage pollution in Malad creek.  Vijay et al. 

(2015) reported that extent of sewage pollution in marine en- 

vironment can be identified and analysed using LISS IV data. 

The IRS P4 carries Ocean Colour Monitor (OCM) sensor and 

Multi-frequency Scanning Microwave Radiometer (MSMR) 

sensors that provide information related to several oceanograph- 

ic parameters like SST, wind speed, and atmospheric water 

vapour (Subrahmanyam et al., 2002; Parmar et al., 2006; Ku- 

mar et al., 2012; Sathiyamoorthy et al., 2012; Modi et al., 2021). 

The OCM also provides the water quality data namely chloro- 

phyll, inorganic suspended matter and yellow substance, and oil 

spill, etc. (https://directory.eoportal.org/web/eoportal/satellite-

missions/i/irs). The OceanSat-2 is the second oceanographic 

satellite of the IRS series to continue the oceano- graphic study 

using satellite data. OceanSat-2 is applicable to study sediment 

dynamics, monitoring of algal bloom, sea ice, monsoon, and 

cyclone fore-cast (https://directory.eoportal.org /web/eoportal/ 

satellite-missions/o/oceansat-2). The application of OCM data 

has been summarised in Table 7. 

There are some other sensors namely IKONOS, Cartosat, 

SARAL-AltiKa, Advanced Space-borne Thermal Emission and
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Table 5. MODIS Data and Water Quality Parameters with the Method 

Dataset Parameter Method Band/Index/Equation Reference 

MODIS 

 

CDOM Rrs ratio and 

absorption 

algorithm, ratio 

Rrs(667)/Rrs(488), blue and green, 

green and red 

Schaeffer et al., 2015; Wang et al., 

2005; Menken et al., 2006 

Temperature  TIR Wang et al., 2005; Handcock et al., 

2006; Morozov et al., 2015; Bierman, 

2010 

SDD Blue, green Blue, green Menken et al., 2006 

Turbidity and SS  Ratio NIR and red Wu and Murray, 2003 

Chlorophyll Ratio NIR and red Menken et al., 2006; Hunter et al., 

2010 

 

Table 6. MERIS Data and Water Quality Parameters with the Method 

Dataset Parameter Method Band/Index/Equation Reference 

MERIS 

 

Chlorophyll  Neural network (NN), 

non-linear regression, 

PCA + MLR, ratio 

NA, [Rrs(670) − 1 − Rrs(710) − 1] × 

Rrs(750); PC1, PC2, PC3, PC4; blue 

and green band 

Giardino et al., 2010; Gitelson et 

al., 2014; Flink et al., 2020; 

Ruiz-Verdú et al., 2008 

Suspended 

particulate matter  

NN NA Giardino et al., 2010 

CDOM NN NA Giardino et al., 2014 

Reflection Radiometer (ASTER), hyperspectral, spectrora- 

diometer also available and used for monitoring and manage- 

ment of inland estuarine, and marine waterbody. Satapathy et 

al. (2010) showed the effectiveness of IKONOS data for the as- 

sessment of water turbidity. SARAL data sets are very useful 

for sea-level assessment for the world ocean (https://www.mo 

sdac.gov.in/saral-altika). ASTER data is also used for the as- 

sessment of water quality for the global waterbodies. It’s also 

used to calculate the water quality index (WQI) with the associ- 

ation of field observations (Abdelaty, 2018). 

 

Table 7. IRS Data and Water Quality Parameters 

Spectral 

band 

Application 

Band1 Yellow substance/organic matter 

Band2 Chlorophyll  

Band3 Chlorophyll and other pigments 

Band4 Turbidity and suspended solids 

Band5 Chlorophyll references 

Band6 Total suspended matter 

Band7 Atmospheric correction 

Band8 Atmospheric correction/Aerosol optical thickness 

5. Limitations of Remote Sensing 

Although, several satellite data are available to monitor the 

water pollution from the space, optically non-active parameters 

are still challenging to assess with this technique. Even assess- 

ment of optical parameters during monsoon is quite difficult. 

Unavailability of high-resolution data for every region, clouds 

on the image, high cost, etc. can reduce the acceptability of this 

technique. Processing of data like atmospheric correction, or- 

tho-rectification, etc., is quite complex. Highly configured com- 

puters, advanced software, and trained people are also required 

in this field, which may be an issue at different places. The 

available equations/algorithms are restricted to places, seasons, 

and parameters. Interrelated/overlapping parameters are prob- 

lematic to identify using moderate resolution data. Though, 

there are some limitations, remote sensing technology provides 

an adequate way to evaluate and monitor water quality param- 

eters. 

6. Discussion 

The literature review narrates that several satellites are 

there for the estimation of selected water quality parameters. 

Based on the appearance of water spectral reflectance is differ- 

ent and this difference can measure by different spectral bands 

of the electromagnetic spectrum. Spectral, spatial, and tempo- 

ral resolution is the critical component for the selection of a par- 

ticular sensor. High-resolution satellite data are always prefer- 

able, but the combined resolutions (spatial, spectral, and tem- 

poral) are mostly used for water quality monitoring (Hellweger 

et al., 2004). High-resolution satellites, namely QuickBird, 

Ikonos, WorldView-2, etc., are recommended for their hetero- 

geneous spatial properties (Giardino et al., 2014). Due to wide 

spatial coverage, short time of repetivity, and low cost, Landsat 

series satellites are (Thematic mapper, multispectral) widely 

used for water quality estimation of surface water (Dekker et 

al., 1996; Hellweger et al., 2004; Brezonik et al., 2005; Sudheer 

et al., 2006; Hadjimitsis et al., 2009). Landsat TM has been 

recognised as the oldest sensor for assessment of water quality. 

Sentinel data have huge potential to monitor the water quality 

in a significant way. Sentinel data are open source high resolu- 

tion therefore there is wide applicability of this data for water 

quality study. Similarly, SPOT, MODIS, MERIS, and IRS satel- 

lites are also applicable for water quality determination at dif- 
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ferent scales (regional, country, global). 

Satellite-based monitoring of the surface waterbodies is not 

adequate to display pollution status or mapping of aquatic en- 

virons. The empirical method should also be applicable for val- 

idation of the spectral response of the sensor by making a statis- 

tical relationship between the result get from the conventional 

procedure and spectral reflectance captured by satellite bands. 

The empirical methods are suitable for data analysis, validation, 

and easy to apply for accuracy assessment. This approach should 

be helpful for large-scale water quality assessment, and the 

health of rivers, and waterbodies. It will minimize the ground-

based laborious work, save the human resource, and will sup- 

port avoiding financial issues for water quality survey. 

7. Conclusions 

The review study addressed the significance of remote 

sensing techniques to study water pollution. The availability of 

open-source data can reduce the project cost and save time. Dif- 

ferent satellites and sensors have been reviewed to describe the 

water quality parameters, which can be assessed efficiently 

through this technique. The study reveals that optical parame- 

ters can be evaluated and monitored with this technique, but 

there is some limitation for non-optically active parameters. The 

Landsat data have wide application in the field of inland as well 

marine water quality assessment. Other satellite data like Sen- 

tinel, and SPOT can assess water quality with minor details. 

MODIS and MERIS have little boundation for small waterbody 

but have a significant application in the marine environment. 

IRS satellite data are also very useful for water quality assess- 

ment as well as ocean forecasting. Several methods, equations, 

and algorithms are already developed that might be helpful for 

future research work. Image analysis along with ground truthing 

is a key procedure for the assessment of water quality in an in- 

land waterbody or marine environment. The review study sug- 

gests future innovation and development of sensors to assess the 

non-optically active constituents, high-resolution data, and uni- 

form methods for a particular water quality parameter, new meth- 

ods or algorithms to assess water pollution more efficiently. 

 
Acknowledgments. The authors are thankful to the director CSIR-

NEERI, Nagpur for providing the necessary infrastructures and sup- 

port to carry out this research study. 

References 

Abbas, M.M., Melesse, A.M., Scinto, L.J. and Rehage, J.S. (2019). 

Satellite estimation of chlorophyll-a using moderate resolution imag- 

ing spectroradiometer (MODIS) sensor in shallow coastal water bod- 

ies: Validation and improvement. Water, 11(8), 1621. https://doi. 

org/10.3390/w11081621 

Abdelaty, E.F. (2018). Monitoring of water quality for agriculture pur- 

poses using high resolution images (ASTER): A case study from 

Egypt. Alexandria Science Exchange Journal, 39(3), 465-477. https: 

//doi.org/10.21608/asejaiqjsae.2018.15336 

Akbar, T.A., Hassan, Q. and Achari, G. (2010). A remote sensing based 

framework for predicting water quality of different source waters. 

International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 34(Part XXX). 

Alcântara, E., Bernardo, N., Watanabe, F., Rodrigues, T., Rotta, L., 

Carmo, A., Shimabukuro, M., Gonçalves, S. and Imai, N. (2016). 

Estimating the CDOM absorption coefficient in tropical inland 

waters using OLI/Landsat-8 images. Remote Sensing Letters, 7(7-

9), 661-670. https://doi.org/10.1080/2150704X.2016.1177242 

Alparslan, E., Aydöner, C., Tufekci, V. and Tüfekci, H. (2007). Water 

quality assessment at Ömerli Dam using remote sensing techniques. 

Environmental monitoring and assessment, 135(1-3), 391-398. https: 

//doi.org/10.1007/s10661-007-9658-6 

Baban, S.M. (1993). Detecting water quality parameters in the Norfolk 

Broads, UK, using Landsat imagery. International Journal of Re- 

mote Sensing, 14(7), 1247-1267. https://doi.org/10.1080/01431169 

308953955 

Barrett, D.C. and Frazier, A.E. (2016). Automated method for monitor- 

ing water quality using Landsat imagery. Water, 8(6), 257. https:// 

doi.org/10.3390/w8060257 

Bayat, F. and Hasanlou, M. (2016). Feasibility study of Landsat-8 im- 

agery for retrieving sea surface temperature (case study persian 

gulf). International Archives of the Photogrammetry, Remote Sens- 

ing and Spatial Information Sciences, XLI-B8,1107-1110. https:// 

doi.org/10.5194/isprsarchives-XLI-B8-1107-2016 

Bentamy, A., Piolle, J.F., Grouazel, A., Danielson, R., Gulev, S., Paul, 

F., Azelmat, H., Mathieu, P.P., von Schuckmann, K., Sathyen- 

dranath, S. and Evers-King. H. (2017). Review and assessment of 

latent and sensible heat flux accuracy over the global oceans. 

Remote Sensing of Environment, 201, 196-218. https://doi.org/10. 

1016/j.rse.2017.08.016 

Bhardwaj, R.M. and Scientist, 'C. (2005). Status of Wastewater Gener- 

ation and Treatment in India. IWG-Env, International Work Session 

on Water Statistics, Vienna. 

Bierman, P.E. (2010). Remote sensing to monitor interactions between 

aquaculture and the environment of Spencer Gulf, South Australia. 

Ph.D. Dissertation, School of Earth and Environmental Sciences, 

University of Adelaide. 

Bonansea, M., Rodriguez, M.C., Pinotti, L. and Ferrero, S. (2015). Us- 

ing multi-temporal Landsat imagery and linear mixed models for as- 

sessing water quality parameters in Río Tercero reservoir (Argenti- 

na). Remote Sensing of Environment, 158, 28-41. https://doi.org/1 

0.1016/j.rse.2014.10.032 

Brezonik, P., Menken, K.D. and Bauer, M. (2005). Landsat-based re- 

mote sensing of lake water quality characteristics, including chloro- 

phyll and colored dissolved organic matter (CDOM). Lake and 

Reservoir Management, 21(4), 373-382. https://doi.org/10.1080/07 

438 140509354442 

Chang, J. and Clay, D. (2016). Matching remote sensing to problems. 

In iGrow Corn: Best Management Parctices. South Dakota State 

University. 

Chauhan, P., Nayak, S., Ramesh, R., Krishnamoorthy, R. and Rama- 

chandran, S. (1996). Remote sensing of suspended sediments along 

the Tamil Nadu coastal waters. Journal of the Indian society of 

Remote Sensing, 24(2), 105-114. https://doi.org/10.1007/bf03016 

123 

Chen, J., Zhu, W., Tian, Y.Q., Yu, Q., Zheng, Y. and Huang, L. (2017). 

Remote estimation of colored dissolved organic matter and chloro- 

phyll-a in Lake Huron using Sentinel-2 measurements. Journal of 

Applied Remote Sensing, 11(3), 036007. https://doi.org/0.1117/ 1.J 

RS.11.036007 

Chen, L., Tan, C.H., Kao, S.J. and Wang, T.S. (2008). Improvement of 

remote monitoring on water quality in a subtropical reservoir by in- 

corporating grammatical evolution with parallel genetic algorithms 

into satellite imagery. Water Research, 42(1-2), 296-306. https://doi. 

org/10.1016/j.watres.2007.07.014 

Chuvieco, E. (2016). Fundamentals of satellite remote sensing: An 

environmental approach. CRC press. https://doi.org/10.1201/97804 

29506482 



J. Dey and R. Vijay / Journal of Environmental Informatics Letters 8(1) 1-11 (2022) 

9 

 

Cox Jr, R.M., Forsythe, R.D., Vaughan, G.E. and Olmsted, L.L. (1998). 

Assessing water quality in Catawba River reservoirs using Landsat 

thematic mapper satellite data. Lake and Reservoir Management, 

14(4), 405-416. https://doi.org/10.1080/07438149809354347 

CPCB (2021). National inventory of sewage treatment plants. https:// 

cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8

xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg== (accessed 

September 19, 2022) 

Dakkak, A. (2016). Water pollution worries in developing world. https:// 

www.ecomena.org/tag/water-pollution-in-developing-countries (ac- 

cessed July 12, 2022). 

Das, N.N. and Mohanty, B.P. (2006). Root zone soil moisture assess- 

ment using remote sensing and vadose zone modeling. Vadose Zone 

Journal, 5(1), 296-307. https://doi.org/10.2136/vzj2005.0033 

Dekker, A.G. and Peters, S.W.M. (1993). The use of the Thematic Map- 

per for the analysis of eutrophic lakes: a case study in the Nether- 

lands. International Journal of Remote Sensing, 14(5), 799-822. 

https://doi.org/10.1080/01431169308904379 

Dekker, A.G., Zamurović-Nenad, Ž., Hoogenboom, H.J. and Peters, 

S.W.M. (1996). Remote sensing, ecological water quality modelling 

and in situ measurements: a case study in shallow lakes. Hydrolog- 

ical Sciences Journal, 41(4), 531-547. https://doi.org/10.1080/026- 

2666960 9491524 

Denchak, M. (2018). Water pollution: Everything you need to know. 

https://www.nrdc.org/stories/water-pollution-everything-you-need-

know (accessed July 12, 2022). 

Ekercin, S. (2007). Water Quality Retrievals from High Resolution 

Ikonos Multispectral Imagery: A Case Study in Istanbul, Turkey. 

Water Air and Soil Pollution, 183(1-4), 239-251. https://doi.org/10. 

1007/s11270-007-9373-5 

Fink, G., Burke, S., Simis, S.G., Kangur, K., Kutser, T. and Mulligan, 

M. (2020). Management options to improve water quality in Lake 

Peipsi: insights from large scale models and remote sensing. Water 

Resources Management, 34(7), 2241-2254. https://doi.org/10.1007/ 

s11269-018-2156-5 

Gholizadeh, M.H., Melesse, A.M., Reddi, L. (2016). A comprehensive 

review on water quality parameters estimation using remote sensing 

techniques. Sensors, 16(8), 1298. https://doi.org/10.3390/s1608129 

8 

Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A. and Morabito, 

G. (2014). Optical remote sensing of lakes: an overview on Lake 

Maggiore. Journal of Limnology, 73(s1), 201-214. https://doi.org/ 

10.4081/jli mnol.2014.817 

Giardino, C., Bresciani, M., Villa, P. and Martinelli, A. (2010). Appli- 

cation of remote sensing in water resource management: the case 

study of Lake Trasimeno, Italy. Water resources management, 

24(14), 3885-3899. https://doi.org/10.1007/s11269-010-9639-3 

Gitelson, A., Robert, S., Gideon, O. and Inka, D. (1997). Monitoring 

of polluted water bodies by remote sensing. Remote Sensing and 

Geographic Information Systems for Design and Operation of Water 

Resources Systems: Proceedings of Rabat Symposium S3, Rabat. 

https://digitalcommons.unl.edu/natrespapers/244 

Gitelson, A.A., Peng, Y., Arkebauer, T.J. and Schepers, J. (2014). Rela- 

tionships between gross primary production, green LAI, and canopy 

chlorophyll content in maize: Implications for remote sensing of pri- 

mary production. Remote Sensing of Environment, 144, 65-72. https: 

//doi.org/10.1016/j.rse.2014.01.004 

Hadjimitsis, D.G., Clayton, C.R. and Retalis, A. (2009). The use of se- 

lected pseudo-invariant targets for the application of atmospheric 

correction in multi-temporal studies using satellite remotely sensed 

imagery. International Journal of Applied Earth Observation and 

Geoinformation, 11(3), 192-200. https://doi.org/10.1016/j.jag.2009. 

01.005 

Han, L. and Jordan, K.J. (2005). Estimating and mapping chlorophyll-

a concentration in Pensacola Bay, Florida using Landsat ETM+ data. 

International Journal of Remote Sensing, 26(23), 5245-5254. https: 

//doi.org/10.1080/01431160500219182 

Handcock, R.N., Gillespie, A.R., Cherkauer, K.A., Kay, J.E., Burges, 

S.J. and Kampf, S.K. (2006). Accuracy and uncertainty of thermal-

infrared remote sensing of stream temperatures at multiple spatial 

scales. Remote Sensing of Environment, 99(4), 427-440. https://doi. 

org/10.1016/j.rse.2005.07.007 

Hellweger, F.L., Schlosser, P., Lall, U. and Weissel, J.K. (2004). Use 

of satellite imagery for water quality studies in New York Harbor. 

Estuarine. Coastal and Shelf Science, 61(3), 437-448. https://doi.org 

/10.1016/j.ecss.2004.06.019 

Hicks, B.J., Stichbury, G.A., Brabyn, L.K, Allan, M.G. Ashraf, S. 

(2013). Hindcasting water clarity from Landsat satellite images of 

unmonitored shallow lakes in the Waikato region, New Zealand. 

Environmental Monitoring and Assessment, 185(9), 7245-7261. 

https://doi.org/10.1007/s10661-013-3098-2 

Hommersom, A., Peters, S., Wernand, M.R. and de Boer, J. (2009). 

Spatial and temporal variability in bio-optical properties of the Wad- 

den Sea. Estuarine, Coastal and Shelf Science, 83(3), 360-370. https: 

//doi.org/10.1016/j.ecss.2009.03.042 

Hommersom, A., Wernand, M.R., Peters, S. and de Boer, J. (2010). A 

review on substances and processes relevant for optical remote sens- 

ing of extremely turbid marine areas, with a focus on the Wadden 

Sea. Helgoland Marine Research, 64(2), 75-92. https://doi.org/10. 

1007/s10152-010-0191-6 

Hunter, P.D., Tyler, A.N., Carvalho, L., Codd, G.A. and Maberly, S.C. 

(2010). Hyperspectral remote sensing of cyanobacterial pigments as 

indicators for cell populations and toxins in eutrophic lakes. Remote 

Sensing of Environment, 114(11), 2705-2718. https://doi.org/10. 

1016/j.rse.2010.06.006 

Kallio, K. (2000). Remote Sensing as a tool for monitoring lake water 

quality. Hydrological and Limnological Aspects of Lake Monitoring. 

John Wiley & Sons Publishing, pp 237-245. https://doi.org/10.1002 

/9780470511121.ch20 

Khorram, S., Cheshire, H., Geraci, A.L. and Rosa, G.L. (1991). Water 

quality mapping of Augusta Bay, Italy from Landsat-TM data. In- 

ternational Journal of Remote Sensing, 12(4), 803-808. https://doi. 

org/10.1080/01431169108929696 

Kilpatrick, K.A., Podesta, G.P. and Evans, R. (2001). Overview of the 

NOAA/NASA advanced very high resolution radiometer Pathfinder 

algorithm for sea surface temperature and associated matchup 

database. Journal of Geophysical Research: Oceans, 106(C5), 

9179-9197. https://doi.org/10.1029/1999JC000065 

Kumar, P., Kumar, K.P.H. and Pal, K.P. (2012). Impact of Oceansat-2 

scatterometer winds and TMI observations on Phet cyclone simula- 

tion. IEEE transactions on geoscience and remote sensing, 51(6), 

3774-3779. https://doi.org/10.1109/TGRS.2012.2221720 

Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. and Lafaye, M. 

(2007). Classification of ponds from high-spatial resolution remote 

sensing: Application to Rift Valley Fever epidemics in Senegal. 

Remote Sensing of Environment, 106(1), 66-74. https://doi.org/10. 

1016/j.rse.2006.07.012 

Lathrop, R.G., Lillesand, T.M. and Yandell, B.S. (1991). Testing the 

utility of simple multi-date Thematic Mapper calibration algorithms 

for monitoring turbid inland waters. Remote Sensing, 12(10), 2045-

2063. https://doi.org/10.1080/01431169108955235 

Lim, J. and Choi, M. (2015). Assessment of water quality based on 

Landsat 8 operational land imager associated with human activities 

in Korea. Environmental Monitoring and Assessment, 187(6), 384. 

https://doi.org/10.1007/s10661-015-4616-1 

Lobo, F.L., Costa, M.P. and Novo, E.M. (2015). Time-series analysis 

of Landsat-MSS/TM/OLI images over Amazonian waters impacted 

by gold mining activities. Remote Sensing of Environment, 157, 

170-184. https://doi.org/10.1016/j.rse.2014.04.030 

Maier, P.M. and Keller, S. (2018). Machine learning regression on 

hyperspectral data to estimate multiple water parameters. In 2018 

9th Workshop on Hyperspectral Image and Signal Processing: 



J. Dey and R. Vijay / Journal of Environmental Informatics Letters 8(1) 1-11 (2022) 

10 

 

Evolution in Remote Sensing (WHISPERS) (pp. 1-5). IEEE. 

Mancino, G., Nolè, A., Urbano, V., Amato, M. and Ferrara, A. (2009). 

Assessing water quality by remote sensing in small lakes: the case 

study of Monticchio lakes in southern Italy. IForest-Biogeosciences 

and Forestry, 2(4), 154-161. https://doi.org/10.3832/ifor0507-002 

McCullough, E.A., Eckels, S. and Harms, C. (2009). Determining tem- 

perature ratings for children’s cold weather clothing. Applied Er- 

gonomics, 40(5), 870-877. https://doi.org/10.1016/j.apergo.200812. 

004 

Meng, X. and Cheng, J. (2019). Estimating land and sea surface tem- 

perature from cross-calibrated Chinese Gaofen-5 thermal infrared 

data using split-window algorithm. IEEE Geoscience and Remote 

Sensing Letters, 17(3), 509-513. https://doi.org/10.1109/ LGRS.201 

9.2921863 

Menken, K.D., Brezonik, P.L. and Bauer, M.E. (2006). Influence of 

chlorophyll and colored dissolved organic matter (CDOM) on lake 

reflectance spectra: Implications for measuring lake properties by 

remote sensing. Lake and Reservoir Management, 22(3), 179-190. 

https://doi.org/10.1080/07438140609353895 

Miksa, S., Gege, P. and Heege, T. (2004). Investigations on the capa- 

bility of CHRIS-Proba for monitoring of water constituents in Lake 

Constance compared to MERIS. Proceedings of the 2nd CHRIS-

PROBA Workshop. ESA/ESRIN, Frascati, Italy. 

Minnett, P.J., Alvera-Azcárate, A., Chin, T.M., Corlett, G.K., Gente- 

mann, C.L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, 

E. and Santoleri, R. (2019). Half a century of satellite remote sens- 

ing of sea-surface temperature. Remote Sensing of Environment, 

233, 111366. https://doi.org/10.1016/j.rse.2019.111366 

Modi, A., Munaka, S.K., Harikumar, R., Nair, T.M. and Srinivas, K. 

(2021). Evaluation of winds from SCATSAT-1 and ASCAT using 

buoys in the Indian ocean. Journal of the Indian Society of Remote 

Sensing, 49(8), 1915-1925. https://doi.org/10.1007/s12524-021-01 

335-4 

Moges, M.A., Schmitter, P., Tilahun, S.A., Ayana, E.K., Ketema, A.A., 

Nigussie, T.E. and Steenhuis, T.S. (2017). Water quality assessment 

by measuring and using Landsat 7 etm+ images for the current and 

previous trend perspective: Lake tana Ethiopia. Journal of Water 

Resource and Protection, 9(12), 1564-1585. https://doi.org/10.4236 

/j warp.2017.912099 

Hasmadi, I.M. and Norsaliza, U. (2010). Analysis of SPOT-5 data for 

mapping turbidity level of river klang, peninsular malaysia. Applied 

Remote Sensing Journal, 1(2), 14-18. 

Morozov, E., Kondrik, D., Fedorova, A., Pozdnyakov, D., Tang, D.L. 

and Pettersson, L. (2015). A spaceborne assessment of cyclone im- 

pacts on Barents Sea surface temperature and chlorophyll. Interna- 

tional Journal of Remote Sensing, 36(7), 1921-1941. https://doi.org 

/10.1080/01431161.2015.1029098 

Nakate, U.T., Lee, G.H., Ahmad, R., Patil, P., Bhopate, D.P., Hahn, 

Y.B., Yu Y.T., and Suh, E.K. (2018). Hydrothermal synthesis of p-

type nanocrystalline NiO nanoplates for high response and low con- 

centration hydrogen gas sensor application. Ceramics International, 

44(13), 15721-15729. https://doi.org/10.1016/j.cera mint.2018.05. 

246 

Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-

Patissier, D., Cherukuru, N., Brando, V., Dekker, A., Clementson, 

L., Banks, A.C., Maritorena, S., Werdell, P.J., Sá, C., Brotas, V., 

Caballero de Frutos, I., Ahn, Y.H., Salama, S., Tilstone, G., 

Martínez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Pe- 

terson, T., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M. and 

Brockmann, C. (2015). Coastcolour round robin data sets: a database 

to evaluate the performance of algorithms for the retrieval of water 

quality parameters in coastal waters. Earth system science data, 7(2), 

319-348. https://doi.org/10.5194/essd-7-319-2015 

Norsaliza, U. and Hasmadi, M.I. (2010). Use of remote sensing and GIS 

in monitoring water quality. Journal of Sustainable Development, 

3(3), 228-238. https://doi.org/10.5539/jsd.v3n3p228 

Onderka, M. (2008). Remote sensing and identification of places sus- 

ceptible to sedimentation in the Danube River. Available online: 

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.9539&rep

=rep1&type=pdf 

Panda, S.S., Garg, V. and Chaubey, I. (2004). Artificial neural net- 

works application in lake water quality estimation using satellite im- 

agery. Journal of Environmental Informatics, 4(2), 65-74. https://do 

i.org/10.3808/jei.200400038 

Parkinson, C.L. (2003). Aqua: An Earth-observing satellite mission to 

examine water and other climate variables. IEEE Transactions on 

Geoscience and Remote Sensing, 41(2), 173-183. https://doi.org/10. 

1109/tgrs.2002.808319 

Parmar, R., Sarkar, S., Dewan, C., Undurti, S., Pandya, H., Bhagat, H., 

Detroja, M. and Seth, H. (2006). Ocean color monitor sensor. Remote 

Sensing of the Marine Environment, 6406, 103-110. SPIE. https:// 

doi.org/10.1117/12.697953 

PERMACULTURE (2017). Pesticides and water pollution. https://per 

maculturenews.org/2017/05/24/pesticides-water-pollution (accessed 

July 12, 2022). 

Poole, G.C. and Berman, C.H. (2001). An ecological perspective on 

in-stream temperature: natural heat dynamics and mechanisms of 

human-caused thermal degradation. Environmental management, 

27(6), 787-802. https://doi.org/10.1007/s002670010188 

Ritchie, J.C., Zimba, P.V. and Everitt, J.H. (2003). Remote sensing 

techniques to assess water quality. Photogrammetric Engineering & 

Remote Sensing, 69(6), 695-704. https://doi.org/10.14358/PERS.6 

9.6.695 

Roy, P.S., Behera, M.D. and Srivastav, S.K. (2017). Satellite remote 

sensing: sensors, applications and techniques. Proceedings of the 

National Academy of Sciences, India Section A: Physical Sciences, 

87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8 

Ruiz-Verdú, A., Simis, S.G., de Hoyos, C., Gons, H.J. and Peña-

Martínez, R. (2008). An evaluation of algorithms for the remote 

sensing of cyanobacterial biomass. Remote Sensing of Environment, 

112(11), 3996-4008. https://doi.org/10.1016/j.rse.2007.11.019 

Rundquist, D.C., Han, L., Schalles, J.F. and Peake, J.S. (1996). Remote 

measurement of algal chlorophyll in surface waters: the case for the 

first derivative of reflectance near 690 nm. Photogrammetric 

Engineering and Remote Sensing, 62(2), 195-200. https://doi.org/10. 

1016/S0924-2716(96)90007-6 

Sagan, V., Peterson, K.T., Maimaitijiang, M., Sidike, P., Sloan, J., 

Greeling, B.A., Maalouf, S. and Adams, C. (2020). Monitoring in- 

land water quality using remote sensing: Potential and limitations of 

spectral indices, bio-optical simulations, machine learning, and cloud 

computing. Earth-Science Reviews, 205, 103187. https://do i.org/10. 

1016/j.earscirev.2020.103187 

Salama, M.S., Spaias, L., Poser, K., Peters, S. and Laanen, M. (2022). 

Validation of Sentinel-2 (MSI) and Sentinel-3 (OLCI) Water Qual- 

ity Products in Turbid Estuaries Using Fixed Monitoring Stations. 

Frontiers in Remote Sensing, 2, 808287. https://doi.org/10.3389/ 

frsen.2021.808287 

Satapathy, D.R., Vijay, R., Kamble, S.R. and Sohony, R.A. (2010). Re- 

mote sensing of turbidity and phosphate in creeks and coast of 

Mumbai: an effect of organic matter. Transactions in GIS, 14(6), 

811-832. https://doi.org/10.1111/j.1467-9671.2010.01234.x 

Sathiyamoorthy, V., Sikhakolli, R., Gohil, B.S. and Pal, P.K. (2012). 

Intra-seasonal variability in Oceansat-2 scatterometer sea-surface 

winds over the Indian summer monsoon region. Meteorology and 

Atmospheric Physics, 117(3-4), 145-152. https://doi.org/10.1007/ 

s0703-012-0189-5 

Schaeffer, B.A., Conmy, R.N., Duffy, A.E., Aukamp, J., Yates, D.F. 

and Craven, G. (2015). Northern Gulf of Mexico estuarine coloured 

dissolved organic matter derived from MODIS data. International 

Journal of Remote Sensing, 36(8), 2219-2237. https://doi.org/10. 

1080/01431161.2015.1035408 

Sharma, S. (2017). Effects of urbanization on water resources-facts 



J. Dey and R. Vijay / Journal of Environmental Informatics Letters 8(1) 1-11 (2022) 

11 

 

and figures. International Journal of Scientific and Engineering 

Research, 8(4), 433-459. 

Sharma, V., Irmak, S., Kilic, A., Sharma, V., Gilley, J.E., Meyer, G.E., 

Knezevic, S.Z. and Marx, D. (2016). Quantification and mapping of 

surface residue cover for maize and soybean fields in south central 

Nebraska. Transactions of the ASABE, 59(3), 925-939. https://doi. 

org/10.13031/trans.59.11489 

Shirke, S., Pinto, S.M., Kushwaha, V.K., Mardikar, T. and Vijay, R. 

(2016). Object-based image analysis for the impact of sewage pol- 

lution in Malad Creek, Mumbai, India. Environmental monitoring 

and assessment, 188(2), 95. https://doi.org/10.1007/s10 661-015-49 

81-9 

Subrahmanyam, B., Rao, K.H., Rao, S.N., Murty, V.S.N. and Sharp, 

R.J. (2002). Influence of a tropical cyclone on chlorophyll‐a con- 

centration in the Arabian Sea. Geophysical Research Letters, 29(22), 

22-1-22-4. https://doi.org/10.1029/2002gl015892 

Sudheer, K.P., Chaubey, I. and Garg, V. (2006). Lake water quality as- 

sessment from Landsat thematic mapper data using neural network: 

an approach to optimal band combination selection1. JAWRA Jour- 

nal of the American Water Resources Association, 42(6), 1683-1695. 

https://doi.org/10.1111/j.1752-1688.2006.tb06029.x 

Sun, A.Y., Miranda, R.M. and Xu, X. (2015). Development of multi-

metamodels to support surface water quality management and deci- 

sion making. Environmental Earth Sciences, 73(1), 423-434. https: 

//doi.org/10.1007/s12665-014-3448-6 

Tandeo, P., Autret, E., Chapron, B., Fablet, R. and Garello, R. (2014). 

SST spatial anisotropic covariances from METOP-AVHRR data. 

Remote Sensing of Environment, 141, 144-148. https://doi.org/10. 

1016/j.rse.2013.10.024 

Thiemann, S. and Kaufmann, H. (2000). Determination of Chlorophyll 

Content and Trophic State of Lakes Using Field Spectrometer IRS-

1C Satellite Data in the Mecklenburg Lake District, Germany. 

Remote Sensing of Environment, 73(2), 227-235. https://doi.org/10. 

1016/s0034-4257(00)00097-3 

Turner, D. (2010). Remote Sensing of Chlorophyll a Concentrations to 

Support the Deschutes Basin Lake and Reservoirs TMDLs. Depart- 

ment of Environmental Quality: Portland, OR, USA. https://www. 

oregon.gov/deq/FilterDocs/RemoteSensingChlorophylla.pdf 

Tyler, A.N., Svab, E., Preston, T., Présing, M. and Kovács, W.A. 

(2006). Remote sensing of the water quality of shallow lakes: A 

mixture modelling approach to quantifying phytoplankton in water 

characterized by high‐suspended sediment. International Journal of 

Remote Sensing, 27(8), 1521-1537. https://doi.org/10.1080/014311 

60500419311 

UNESCO (2017). The United Nations world water development report, 

2017: Wastewater: the untapped resource https://unesdoc.unesco. 

org/ark:/48223/pf0000247153 (accessed July 12, 2022). 

Usali, N. and Ismail, M.H. (2010). Use of remote sensing and GIS in 

monitoring water quality. Journal of Sustainable Development, 3(3), 

228-238. https://doi.org/10.5539/jsd.v3n3p228 

Vanhellemont, Q., (2020). Automated water surface temperature re- 

trieval from Landsat 8/TIRS. Remote Sensing of Environment, 237, 

111518. https://doi.org/10.1016/j.rse.2019.111518 

Vijay, R., Kushwaha, V.K., Pandey, N., Nandy, T. and Wate, S.R. 

(2015). Extent of sewage pollution in coastal environment of Mum- 

bai, India: an object‐based image analysis. Water and Environment 

Journal, 29(3), 365-374. https://doi.org/10.1111/wej.12115 

Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X. and Hagi- 

noya, S. (2005). Estimation of surface long wave radiation and broad- 

band emissivity using Moderate Resolution Imaging Spectrora- 

diometer (MODIS) land surface temperature/emissivity products. 

Journal of Geophysical Research: Atmospheres, 110, D11109. https: 

//doi.org/10.1029/2004jd005566 

Wang, L., Hunt, Jr. E.R., Qu, J.J., Hao, X. and Daughtry, CS. (2013). 

Remote sensing of fuel moisture content from ratios of narrow-band 

vegetation water and dry-matter indices. Remote Sensing of Envi- 

ronment, 129, 103-110. https://doi.org/10.1016/j.rse.2012.10.027 

Waxter, M.T. (2014). Analysis of Landsat satellite data to monitor 

water quality parameters in Tenmile Lake, Oregon. Master Disser- 

tation, Civil and Environmental Engineering, Portland State Uni- 

veristy. https://doi.org/10.15760/CEEMP.35 

WHO (2022). Water, sanitation and hygiene (WASH). https://www. 

who.int/health-topics/water-sanitation-and-hygiene-wash#tab=tab_ 

1 (accessed March 21, 2022). 

Wong, M.S., Nichol, J.E., Lee, K.H. and Emerson, N. (2008). Modeling 

water quality using Terra/MODIS 500 m satellite images. Interna- 

tional Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences-ISPRS Archives, 37(B8), 679-684. 

Wu, C. and Murray, AT. (2003). Estimating impervious surface distri- 

bution by spectral mixture analysis. Remote sensing of Environment, 

84(4), 493-505. https://doi.org/10.1016/s0034-4257(02)00136-0 

Yang, W., Matsushita, B., Chen, J. and Fukushima, T. (2011). Estimat- 

ing constituent concentrations in case II waters from MERIS satel- 

lite data by semi-analytical model optimizing and look-up tables. 

Remote Sensing of Environment, 115(5), 1247-1259. https://doi.org 

/10.1016/j.rse.2011.01.007

 

https://doi.org/10

