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ABSTRACT. This study provides a brief review for uncertainty quantification in hydrological predictions. The major approaches for 

hydrologic predictions are firstly introduced, including the widely used data-driven and process-based modelling approaches. The major 

uncertainties resulting from inputs, model structures, parameters and outputs are then briefly illustrated. The major review is then con- 

ducted for various uncertainty quantification approaches. In detail, the approaches for quantifying uncertainties in model parameters, 

structures and states are mainly reviewed, such as the Markov chain Monte Carlo, sequential data assimilation and model average ap- 

proaches. Potential issues to be addressed in future are then concluded, summarizing some unclear issues which may be further investi-

gated in further studies.  
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1. Introduction 

Water resources and human being are strongly interconnect-

ed, since all aspects of our society functions are depended on 

water availability. Human beings rely on water for a myriad of 

issues, from least being requisite consumption for survival to 

many other socio-economic activities such as agricultural and 

industrial production, power generation, transportation, environ-

mental stewardship, wildfire prevention and flood control (De-

Chant, 2014; Xie et al., 2018; Song et al., 2018). The water that 

is available for human being occurs in various forms such as 

rainfall, snow, rivers, lakes, groundwater, or soil moister. The 

total water resources in the world are estimated in the order of 

43,750 km3/year (FAO, 2003). However, extensive spatial-

temporal variations exist in the distribution of water resources.  

The water availability exhibits significant spatial variations 

from both a global scale and a territory or local scale. For instance, 

the islands and coastal areas near the equator usually experi-

ence a tropical marine climate with the annual rainfall being 

1,000 to over 1,500 mm; conversely, the annual precipitation in 

the areas of North Africa is less than 250 mm and even zero in 

some years, which cannot sustain the survival for any vegeta-

tion. Even within a territory, the water resources availability 

may present obvious spatial variation. The South-to-North Wa-

ter Diversion Project, advocated by Chinese government is a 

famous project to alleviate the severe spatial unbalance of wa-

ter resources in China, in which fresh water from the Yangtze Ri-

ver in southern China is diverted to the Yellow River and Beijing. 
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In addition to severe spatial unbalance in water resources, 

the water resources availability also experiences serious tem-

poral variation due to anthropogenic impacts and climate vari-

ability. For example, the annual precipitation trends in China 

for the period 1960 ~ 2006 were found to decrease in northeast-

ern area caused by the decrease in summer and autumn precip-

itation, increase in southeastern area resulting from the increase 

in summer and winter precipitation (Piao et al., 2010). More-

over, most areas all over the world usually experience wet and 

dry seasons for precipitation within a year, which lead to flood-

ing and drought periods for the rivers. For instance, the Yellow 

River in China can have a maximum discharge of 25,000 m3/s 

in Summer, while it would run dry before reaching the sea in 

Spring since 1972.  

Moreover, the temporal-spatial variations in water resources 

distribution are intensified due to human interventions and cli-

mate change. Studies have stated that global warming due to 

increased greenhouse gas emissions leads to changes in the dis-

tribution of water resources over many regions, and the global 

and regional hydrological cycles have been greatly influenced 

by climate change in the past century (Brutsaert and Palange, 

1998; Scanlon et al., 2007; Solomon et al., 2007; Hagemann et 

al., 2013; Liu et al., 2018a, 2018b). Furthermore, humans di- 

rectly change the dynamics of the water cycle through dams 

constructed for water storage, and through water with-drawals 

for industrial, agricultural or domestic purposes (Haddeland et 

al., 2014). The study proposed by Nakayama and Shankman 

(2013) predicted that the Three-Gorges Dam (TGD) would in- 

crease flood risk during the early summer monsoon against the 

original justifications for building the dam, relating to complex 

river-lake-groundwater interactions (Zhang et al., 2019). 

Due to the spatial-temporal variations in water resources, 
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forecasting of water flows and storage at different spatiotem-

poral scales concerns many water resources planners, and other 

related stockholders. Consequently, it is desirable to develop ad-

vanced hydrologic forecasting techniques to produce accurate 

predictions for hydrological discharges and other states (e.g. 

soil moisture).  

2. Methods for Hydrological Prediction 

There are amounts of approaches for hydrological predic-

tion. In general, these approaches can be categorized into two 

groups: process-driven methods and data-driven methods (Wang, 

2006). The data-driven models can capture the mapping be-

tween input (e.g. rainfall, evaporation, temperature, etc.) and 

output (i.e. streamflow) variables without considering the phys-

ical laws that underline the rainfall-runoff process (Wu, 2010). 

There are numerous data-driven modeling techniques for the 

forecast and simulation of streamflow series. One of the major 

data-driven approaches is based on statistical regression, which 

mainly includes multiple linear regression (Adamowski and 

Karapataki, 2008; Sadri and Burn, 2012; Sachindra et al., 2013) 

and nonlinear regression approaches (Adamowski et al., 2012). 

However, MLR methods have some disadvantages such as not 

fitting the observed data very well or diverting from tails in skew-

ed data (Haghighatjou et al., 2008). Moreover, due to the advance-

ment of computer science, many artificial intelligence and machine 

learning approaches have been developed for hydrological pre-

dictions, such as generalized regression neural network (GRNN) 

(Cigizoglu, 2005), feed forward back propagation neural networks 

(Turan and Yurdusev, 2009; Wang et al., 2009), support vector 

machine (Sujay Raghavendra and Deka, 2014), and least squares 

support vector machines (Okkan and Serbes, 2012). The AI-based 

models confront some drawbacks, such as possibility of getting 

trapped in local minima, over training, subjectivity in the deter-

mining of model parameters, initialization of the weights in each 

simulation randomly, and the components of its complex struc-

ture (Okkan and Serbes, 2012). In addition, there are also some 

nonparametric statistical approaches for hydrological predic-

tions. Among them, the stepwise cluster analysis (SCA) method 

has been widely used for many hydrological applications such 

as streamflow predictions (Fan et al., 2015a, 2016a, b; Li et al., 

2015, 2016), climate downscaling (Wang et al., 2013; Zhuang 

et al., 2018). The main advantage of SCA is that the inherent 

relationship between the explanatory and response variables is 

reflected through cluster trees, which are derived through cut-

ting or merging the sample sets of response variables into new 

sets based on given criteria. These cluster trees, instead of spe-

cific mathematical functions, can establish the relationship be-

tween explanatory variables to response variables.   

Compared with the data-driven methods, the process-based 

modeling approaches aim to forecast the streamflow of a river 

based on those physical laws in the water cycle system. The ty-

pical process-based modeling approaches are various forms of 

rainfall-runoff models. Although advanced data-driven models, 

including artificial intelligence, statistical and machine learning 

models have been developed by many researches, and produced 

high accuracy of streamflow forecasting, conceptual or process- 

based hydrological models are typically employed for operation-

al flow forecasting. The process-based hydrologic models are 

simplified, conceptual representations of a part of the hydrolo-

gic cycle, which use relatively simple mathematical equations 

to conceptualize and aggregate the complex, spatially distribut-

ed, and highly interrelated water, energy, and vegetation processes 

in a watershed (Vrugt et al., 2005). Such process-based models 

are generally on the basis of mass and energy conservation. The 

simplest hydrologic models just consider the conceptualization 

of water balance (Boyle et al., 2000). However, both the water 

and energy balance are under consideration for most recently 

developed hydrologic models, due to the phase changes of water 

experienced above and below the earth’s surface (Gao et al., 

2010; DeChant, 2014). Due to the differences in perceptualiza-

tion and understandings of hydrologists for different watersheds, 

the hydrologic models can have various formats, from physi-

cally-based (white-box) to black-box or empirical and to con-

ceptual models, and the most distinctive, from lumped models 

to distributed models (Clarke, 1973; Beven, 1985; Wheater et al., 

1993; Refsgaard, 1995; Beven, 2001; Moradkhani and Sorooshian, 

2008). In lumped models, the entire river basin is taken as one 

unit where spatial variability is disregarded and thus such a model-

ing approach tries to relate the forcing data, mainly precipita-

tion inputs, to system outputs (streamflow) without considering 

the spatial processes, patterns and organization of the characteris-

tics governing the processes (Moradkhani and Sorooshian, 2008). 

Representative lumped hydrologic models include the Xinan-

jiang Model (Zhao, 1992), Sacramento Soil Moisture Account-

ing Model (SAC-SMA) (Burnash, 1995), Hymod (Moore, 1985, 

2007). In comparison with lumped hydrologic models, a distribut-

ed or semi-distributed model would take consideration of spa-

tial variation in model variables and parameters, and thus ex-

plicitly characterize the water cycle process and patterns in a 

watershed (Beven, 1985; Refsgaard, 1995; Smith et al., 2004). 

Such a kind of hydrologic models that have been widely ap-

plied by many hydrologists mainly involves SHE (Abbott et al., 

1986a, b), TOPMODEL (Beven and Kirby, 1979), MIKE SHE 

(Refsgaard and Storm, 1995); IHDM (Calver and Wood, 1995), 

SLURP (Kite, 1995).  

Over the past decades, hydrologic modeling has benefited 

from the significant of our society, including dramatic growths 

in computational power, increasing availability of distributed 

hydrologic observations, and improved understanding of the 

physics and dynamics of the hydrologic system (Liu and Gupta, 

2007). The growing availability of both computing power and 

hydrological data observed at fine spatial and temporal scales 

has made the application of hydrologic models an attractive op- 

tion for answering many of the questions which are frequently 

posed to hydrologists (Montanari and Brath, 2004).  

3. Uncertainties in Hydrological Prediction 

For both data-driven and process-based modeling approach-

es, it appears that extensive uncertainties still exist in associa-

tion with the conceptualization and aggregation of the hydro-

logic process, and with the measurements required for forcing 

and evaluating the hydrologic models. These uncertainties 
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would be embodied in the complex interactive processes among 

water, energy and vegetation in a watershed. Uncertainty can 

be defined as the differences between model outputs and ob-

served values, resulting from natural variability (unpredictable 

rainfall, evapotranspiration, water consumption, etc.), both known 

and unknown errors in the input data, the model parameters, and/or 

the model structures and processes (Allataifeh, 2013). Current-

ly, characterization of various uncertainties affecting hydrologic 

models remains a major scientific and operational challenge 

(Renard et al., 2010). 

In general, uncertainty in hydrologic modeling may arises 

from several sources: inputs, outputs, model structures, model 

parameters. The uncertainty in model inputs refers to sampling 

and measurement errors for the forcing data to drive the hydro-

logic model, such as uncertainties in precipitation and evapo-

transpiration. Precipitation uncertainty is generally considered 

as the most influential cause of uncertainty in flood forecasting 

(Moradkhani and Sorooshian, 2008). The uncertainties in model 

inputs result from both the precision in measurement as well as 

the spatial-temporal averaging of these measurements. The un-

certainties involved in model outputs are subject to the rating 

curves inaccuracies at high and low flows, known as heterosce-

dasticity (variance changing) of error with respect to the mag-

nitude of flow as opposed to homoscedasticity (constant vari-

ance) of error (Moradkhani and Sorooshian, 2008). Structural 

uncertainty, also known as the model uncertainty, arises from 

the differences in conceptualization and representation of hy-

drologic processes in hydrologic models. The structural uncer-

tainty in a hydrologic model depends on the model formulation 

(e.g., number and connectivity of stores, choice of constitutive 

functions, etc), on the specific catchment, and on the spatial and 

temporal scale of the analysis (Renard et al., 2010). The param-

eters in hydrologic models can be characterized into physical 

and process parameters: the physical parameters are those can 

be measured directly from the watershed, such as, watershed 

area, impervious area in a watershed, local permeability obtain-

ed using core samples, fraction of vegetated area, and areal percent-

age of water bodies; The process parameters, on the other hand, 

are those which cannot be measured directly and need to be in-

fered by indirect means, including, effective depth of soil mois-

ture storage, effective lateral interflow, rate of drainage for hy-

pothetical lumped storages, mean hydraulic conductivity, and 

surface runoff coefficient (Sorooshian and Gupta, 1995; Gupta, 

1998; Moradkhani and Sorooshian, 2008). The uncertainty in 

hydrologic model parameters reflects the inability to specify 

exact values of model parameters due to finite length and un-

certainties in the calibration data, imperfect process understand-

ing, model approximations, etc. (Renard et al., 2010). 

Due to the extensive uncertainties in hydrologic predic-

tions, proper consideration and quantification of those uncer-

tainties in hydrologic predictions have been broadly recognized 

to be essential for purposes of both research and operational 

modeling (Wagener and Gupta, 2005; Liu and Gupta, 2007). 

The hydrologic predictions, without consideration of the associ- 

ated uncertainty, would be of limited value to real world water 

resources applications, such as flooding control, drought mana- 

gement, and reservoir operation. Consequently, effective un- 

certainty quantification and reduction methods are required for 

the applications of hydrologic models to produce reliable hy- 

drologic forecasts. 

4. Uncertainty Quantification of Hydrologic Models 

For uncertainties exist in hydrologic models, especially for 

characterizing the uncertainty in model parameters, significant 

efforts have been contributed to the development of automatic 

model calibration, aiming to find a best value set for model pa-

rameters to fit the actual measured model responses. Amounts 

of global optimization methods have been developed in recent 

decades to automatic find the best values for model parameters. 

Commonly used optimization techniques include the shuffled 

complex evolution method (SCE-UA) (Duan et al., 1992), Ep-

silon Dominance Nondominated Sorted Genetic Algorithm-II 

(ε-NSGAII) (Deb et al., 2002; Tang et al., 2005), Multiobjec-

tive Shuffled Complex Evolution Metropolis algorithm (MOS-

CEM) (Vrugt et al., 2003), multialgorithm genetically adaptive 

multiobjective method AMALGAM (Vrugt and Robinson, 

2007), and so on.  

However, there are a large number of combinations for model 

parameter sets in the feasible region, and thus only characteriz-

ing the “best” one may not realistic; moreover, unsuccess in 

parameters characterization may lead to considerable uncertain-

ty in model outputs. Therefore, probabilistic estimation methods 

have been developed based on Monte Carlo procedures to re-

solve the above issues. Those available probabilistic methods 

to identify the parameter uncertainty mainly include the Gen-

eralized Likelihood Uncertainty Estimation (GLUE) method 

proposed by Beven and Binley (1992), the Bayesian Recursive 

Estimation (BaRE) algorithm developed by Thiemann et al. 

(2001); the Metropolis method reported by Kuczera and Parent 

(1998) and the Shuffled Complex Evolution Metropolis (SCEM-

UA) algorithm advanced by Vrugt et al. (2003). The GLUE 

method works based on different realization of parameter sets 

in order to estimate the sensitivity of model prediction to vari-

ous parameter sets; the parameter sets are categorized into be-

havioral and non-behavioral via a likelihood measure and those 

that are considered as non-behavioral are discarded for predic-

tion (Moradkhani and Sorooshian, 2008). However, previous 

studies indicated that the reduced capacity of this method ow-

ing to its inconsistency with the Bayesian inference process 

would lead to large overestimation on uncertainty, both for the 

parameter estimation and hydrologic forecasting (Mantovan 

and Todini, 2006; Moradkhani and Sorooshian, 2008). The 

Bayesian recursive estimation (BaRE) approach proposed by 

Thiemann et al. (2001) can be used for simultaneous parameter 

estimation and prediction in an operational setting, in which the 

prediction is described in terms of the probabilities associated 

with different output values, and the uncertainty associated 

with the parameter estimates is updated (reduced) recursively, 

resulting in smaller prediction uncertainties as measurement 

data are successively assimilated. The Metropolis method deve- 

loped by Kuczera and Parent (1998) for the parameter uncer- 

tainty estimation employs a random walk that adapts to the true 

probability distribution describing parameter uncertainty. The 
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SCEM-UA is the extension of the SCE-UA algorithm (Duan et 

al., 1992), in which the Metropolis Hastings (MH) algorithm, 

controlled random search (Price, 1987), competitive evolution 

(Holland, 1975), and complex shuffling (Duan et al., 1992) are 

integrated together to continuously update the proposal distri-

bution and evolve the sampler to the posterior target distribu-

tion (Vrugt et al., 2003). In addition, the approximate Bayesian 

computation (ABC) has been applied for uncertainty quantifi-

cation for hydrologic models (Vrugt and Sadegh, 2014). This 

statistical methodology relaxes the need for an explicit likeli-

hood function in favor of one or multiple different summary 

statistics rooted in hydrologic to estimate the posterior proba-

bility distributions of hydrologic model parameters (Sadegh 

and Vrugt, 2013, 2014). 

For uncertainty in model structures, one powerful approach 

to deal with this problem is to use combination of multimodel 

predictions, or model averaging approaches. The motivating 

idea behind model averaging is that, with various competing 

models at hand, each having its own strengths and weaknesses, 

combination of the individual model forecasts into a single new 

forecast that, up to one’s favorite standard, is at least as good 

as any of the individual forecasts (Diks and Vrugt, 2010). Com-

monly used model averaging techniques include equal weights 

averaging (EWA) where each of the available models is weight-

ed equally (Diks and Vrugt, 2010), Bates-Granger averaging 

(BGA) (Bates and Granger, 1969), AIC and BIC-based model 

averaging (AICA and BICA, respectively) (Buckland et al. 

1997; Burnham and Anderson, 2002; Hansen, 2008), Bayesian 

model averaging (BMA) (Raftery et al., 1997, 2005; Hoeting 

et al., 1999), Mallows model averaging (MMA) (Hansen, 2007, 

2008). Specifically, the Bayesian model averaging method has 

been widely employed to account for structural uncertainty in 

hydrologic models. BMA predictions are weighted averages of 

the individual predictions from competing models, in which the 

weights can reflect the relative model performance since they 

are the probabilistic likelihood measures of a model being cor-

rect given the observations (Duan et al., 2007). 

In a separate line of research, data assimilation methods, 

especially sequential data assimilation techniques, have been 

developed for explicitly dealing with various uncertainties and 

for optimally merging observations into uncertain model pre-

dictions (Xie and Zhang, 2013). In contrast to classical model 

calibration strategies, sequential data assimilation methods con-

tinuously updated the states and parameters in the model when 

new measurements become available to improve the model 

forecast and evaluate the forecast accuracy (Vrugt et al., 2005). 

One prototype of sequential data assimilation techniques is the 

celebrated Kalman filter (Kalman, 1960). For a dynamical system 

with linear states and measurement equations and normally dis-

tributed model errors, the Kalman filter method can provide the 

optimal recursive solution to the state updating problem (Mo-

radkhani and Sorooshian, 2008). Three extensions to the KF 

are widely known, namely, the extended Kalman filter (EKF) 

(Georgakakos, 1986a, b), ensemble Kalman filter (EnKF) (Even- 

sen, 1994) and unscented Kalman filter (UKF) (Julier and Uhl- 

mann, 1997) to deal with nonlinearity in states and measurement 

equations (Liu et al., 2012). Among them, the EnKF approach 

is one of the most frequently used assimilation methods in 

hydrology, due to its attractive features of realtime adjustment 

and ease of implementation (Reichle et al., 2002). The EnKF is 

based upon Monte Carlo or ensemble generations where the 

approximation of the forecast state error covariance matrix is 

made by propagating an ensemble of model states using the 

updated states from the previous time step, and the key point 

EnKF is to generate the ensemble of observations at each up- 

date time by introducing noise drawn from a distribution with 

zero mean and covariance equal to the observational error co- 

variance matrix (Moradkhani and Sorooshian, 2008). The 

EnKF method provides a general framework for dynamic state, 

parameter, as well as joint state-parameter estimation in hydro- 

logic models and has been widely applied for uncertainty quan- 

tification of hydrologic models. For example, Moradkhani et 

al. (2005b) proposed a dual-state estimation approach based on 

the EnKF method for sequential estimation of both parameters 

and state variables of a hydrologic model. Weerts and EI Serafy 

(2006) compared the capability of EnKF and particle filter (PF) 

methods to reduce uncertainty in the rainfall-runoff update and 

internal model state estimation for flooding forecasting pur- 

poses. Shi et al. (2014) presented multiple parameter estimation 

using multivariate observations via the ensemble Kalman filter 

(EnKF) for a physically based land surface hydrologic model. 

Fan et al. (2017a) developed two integrated approaches for hy- 

drological data assimilation through combination of ensemble 

Kalman filter and particle filter methods. However, due to the 

local complex characteristics of the watershed, some parame- 

ters in the hydrologic model may be not quite identifiable and 

showed slow convergence (Moradkhani et al., 2005b, 2012). Such 

unidentifiable parameters would lead to extensive uncertainties in 

hydrologic forecasts. Moreover, to prevent the ensemble col- 

lapse in EnKF (i.e. all ensembles being essentially the same), 

stochastic perturbations would usually be added in the EnKF 

updating process, leading to some extent of uncertainties, even 

after long time data assimilation process, in the parameters of 

hydrologic models. Consequently, Fan et al. (2015b) proposed 

a coupled ensemble filtering and probabilistic collocation 

(EFPC) approach is proposed for uncertainty quantification of 

hydrologic models. In the proposed EFPC, the EnKF method 

would be employed to approximate the posterior probabilities of 

model parameters and improve the forecasting accuracy based 

on the observed measurements, while the PCM approach is 

proposed to construct a model response surface in terms of the 

posterior probabilities of model parameters to reveal uncertain-

ty propagation from model parameters to model outputs. 

Another sequential data assimilation approach includes se-

quential Monte Carlo (SMC) methods such as particle filter (PF) 

(Arulampalam et al., 2002; Moradkhani et al., 2005a; Weerts 

and El Serafy, 2006; Noh et al., 2011; Plaza et al., 2012). Simi-

lar to EnKF, particle filtering evolves a sample of the state 

space forward using the SMC method to approximate the pre-

dictive distribution, but it is potentially more computational ex-

pensive than EnFK (Liu et al., 2012). The most significant ad-

vantage that PF outperforms EnKF is the relaxation of Gauss-

ian distribution in state-space model errors. Furthermore, the 

PF method performs updating on the particle weights instead 
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of the state variables, which can reduce numerical instability 

especially in physically-based or process-based models (Liu et 

al., 2012). The initial implementation of PF was based on se-

quential importance sampling, which would lead to severe de-

terioration for particles (i.e. only several or even on particle would 

be available). Consequently, sampling importance resampling 

(SIR) could be used (Moradkhani et al., 2005a) was then devel-

oped to mitigate the above problem. Previous studies in other 

fields concluded that the PF method usually requires more sam-

ples than other filtering methods and the sample size would in-

crease exponentially with the size of state variables (Liu and 

Chen, 1998; Snyder et al., 2008; Fearnhead and Clifford, 2003). 

Specifically, hundreds or thousands of ensemble members may 

be needed for reliable characterization of the posterior PDFs 

even for small problems with only a few unknown states and 

parameters (Liu et al., 2012). The study proposed by Weerts 

and El Serafy (2006) showed that, for conceptual hydrologic mod- 

els, PF would perform better than EnKF when the sample size is 

more than a hundred. However, the number requirement of parti- 

cles for physically-based distributed hydrologic models may limit 

operational applications of PF (Liu et al., 2012). Recent improve- 

ment for PF is to combine the strengths of sequential Monte Carlo 

sampling and Markov chain Monte Carlo simulation and is espe- 

cially designed for treatment of forcing, parameter, model struc- 

tural and calibration data error (Moradkhani et al., 2012; Vrugt 

et al., 2013). Such an integration can allows for a more com- 

plete representation of the posterior distribution, reducing the 

chance of sample impoverishment and leading to a more accu- 

rate streamflow forecast with small, manageable ensemble 

sizes (Moradkhani et al., 2012). Recently, Fan et al. (2017b) 

proposed a copula-based particle filter (CopPF) approach for 

sequential hydrological data assimilation by considering para- 

meter correlation structures. In CopPF, multivariate copulas are 

proposed to reflect parameter interdependence before the re- 

sampling procedure with new particles then being sampled from 

the obtained copulas. The proposed method can provide more 

accurate results for both deterministic and probabilistic predict- 

tion with small sample size scenarios. In order to further ex- 

plore uncertainty propagation in hydrologic simulation, Fan et 

al. (2016c) proposed a hybrid sequential data assimilation and 

probabilistic collocation (HSDAPC) approach, in which the 

model parameters are first quantified by a particle filter method, 

and a probabilistic collocation method (PCM) is further em- 

ployed to show uncertainty propagation from model parameters 

to model outputs, and characterize the temporal dynamics of 

parameter sensitivities to the predictive uncertainties.  

5. Conclusions 

In the past decades, a large number of research efforts were 

made in uncertainty quantification and reduction for hydrologic 

models. These approaches mainly focus on parameter uncer-

tainties (e.g. MCMC), model structural uncertainties (e.g. BMA), 

as well as model states (e.g. data assimilation). However, some 

issues are still needed to be explored. 

1) Currently, many efforts have been conducted to explore 

efficient uncertainty quantification methods for hydrolo-

gic models. However, these methods seldom consider pa-

rameter interdependence and thus may lead to low sample 

evolution efficiency. Thus, one potential way to achieve 

efficient uncertainty quantification is to introduce multi-

variate statistical approaches (e.g. copula) into MCMC to 

reflect parameter interdependence and then enhance sam-

pling efficiency.  

2) For generic hydrologic predictions, there are uncertainties 

embodied in inputs, model structures, parameters and out-

puts. However, most studied mainly focused on quanti-

fying uncertainties from one of those three sources. There 

are seldom studies to comprehensively explore both indi-

vidual and interactive effects of all the three sources. 

Moreover, no studies have ever reported to characterize 

which source would make the greatest contribution to the 

resulting uncertainties of the hydrologic forecasts. Conse-

quently, further studies are required to comprehensively 

explore the single and interactive effects of uncertainty 

sources and further identify major or dominant uncertainty 

sources. This is quietly meaningful for exploring the ef-

ficient ways to improve the predictability of hydrological 

models. 
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