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ABSTRACT. Temperature is one of the most important parameters in climate modeling, as it has significant impacts on various geophy- 

sical processes such as evaporation and precipitation. Applying multiple climate models for prediction generally outperforms the use of 

individual climate models, and neural networks perform well at capturing nonlinear relationships, which can provide more reliable tempe- 

rature projections. In this study, three neural network algorithms, including Multi-layer Perceptron (MLP), Time-lagged Feed-forward 

Neural Networks (TLFN) and Nonlinear Auto-Regressive Networks with exogenous inputs (NARX), were used to develop data-driven 

models for predicting daily mean near-surface temperature based on North American Coordinated Regional Downscaling Experiment 

(NA-CORDEX) output. A case study of Big Trout Lake in Ontario, Canada was carried out to demonstrate the applications and to evalu- 

ate the performance of the proposed neural network based models. The results showed that MLP, TLFN, and NARX performed well in 

generating accurate daily near-surface temperature predictions with the coefficient of determination (R2) values above 0.84. The three 

neural network based models had similar performance with no significant difference in terms of root mean square error and R2. Neural 

network based climate prediction models outperformed each of the individual regional climate models and generated smoother predict- 

tions with less fluctuation. This study provides a technical basis for generating reliable predictions of daily temperature using neural 

networks based model. 
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1. Introduction 

Temperature changes have significant impacts on natural 

processes and human activities (Karl et al., 2009), for instance, 

biological changes (Parmesan and Yohe, 2003) and construc-

tion sensibility (Xia et al., 2012). Thus, predicting temperature 

precisely is of vital importance. Multiple climate models, such 

as Global Climate Model (GCM) and Regional Climate Model 

(RCM), have been developed and can be applied to temperature 

simulations and predictions, which provide support for climate 

impact analysis (Thomson et al., 2006; Li et al., 2016; Wagner 

et al., 2017). These models were developed by different institu- 

tions and their temperature predictions are not always consis- 

tent with one another. Although these models have errors in 

certain processes (e.g., cloud formation), they can provide plau- 

sible estimations for future variations in climate (Huo and Li, 

2012; Ragone et al., 2015). 

Applying dynamic downscaling to drive RCM is computa- 

tionally costly and time-consuming (Spak et al., 2007). More- 

over, the uncertainties in the modeling system lead to an in-  
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crease in forecast errors with increasing forecast length (Ku- 

mar et al., 2012). Using statistical methods to post-process mul- 

tiple RCMs would help to better generate predictions with 

higher accuracy than an individual RCM (Palmer et al., 2005; 

Barfus and Bernhofer, 2014). Samouly (2018) applied mean 

and median values of multi-model ensembles for monthly tem- 

perature predictions, which showed better prediction perfor- 

mance than using a single RCM. However, as each model ge- 

nerates a different range of predictions and errors, the mean 

value calculated by allocating the same weight to each RCM 

may not be enough to fully take advantage of each prediction 

model. 

Artificial neural networks (ANNs), which are more power- 

ful than the regression-based techniques, have been widely ap- 

plied in climate prediction because of their high potential for 

complex, nonlinear and time-varying input-output mapping 

(Von Storch et al., 2000). For instance, ANNs have been widely 

applied in statistical downscaling for temperature and precipi- 

tation prediction (Wilby and Wigley, 1997; Wilby et al., 1998). 

Previous studies suggest that using computer-based learning 

algorithms, such as ANNs, to develop accurate prediction mod- 

els can profoundly reduce the long-term dependency (Siegel- 

mann, 1997; Sfetsos, 2000; Shen and Chang, 2013; Caswell, 

2014). Moreover, current and future temperatures have a close 

connection with the temperatures of previous days. Incorpo- 
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rating both concurrent and antecedent predictor values as input 

could improve the accuracy of temperature prediction (Couli- 

baly et al., 2005). Various types of neural networks have an in- 

ternal memory structures that can store information about past 

variables. Time-lagged feed-forward networks (TLFNs) and 

recurrent neural networks (RNNs) are the two major groups of 

dynamic neural networks that are commonly used in time series 

analysis (Coulibaly et al., 2001; Dibike and Coulibaly, 2006). 

A TLFN simply replaces the neurons in the input layer of a 

Multi-layer perception (MLP) with a memory structure. It is 

less complex than the RNNs and has similar capability for pro- 

cessing temporal patterns (Dibike et al., 1999). TLFN is an effi- 

cient method for downscaling both daily precipitation as well 

as daily maximum and minimum temperature series (Coulibaly 

et al., 2005). The Nonlinear Auto-Regressive Networks with 

exogenous inputs (NARX) model is a dynamic network that 

has been widely used for time series prediction (Dhussa et al., 

2014). It can learn the behavior of a system in an effective way. 

It also converges much faster and generalizes better than other 

networks (Lin et al., 1996; Çoruh et al., 2014). It has been de- 

monstrated that NARX is capable of capturing the dynamics of 

nonlinear complex systems (Diaconescu, 2008; Chan et al., 

2015). Moreover, NARX performs favorably on long-term de- 

pendencies (Rahimi et al., 2018). Thus, NARX is particularly 

useful for time series modeling. 

Considering that neural networks perform well at grasping 

the nonlinear relationships between predictors and predictands, 

MLP, TLFN, and NARX models will be applied to simulate 

daily mean near-surface temperature and generate predictions 

basing on multiple RCMs. The goal of this study is to develop, 

validate and evaluate the performance of neural networks for 

daily mean near-surface prediction with multiple RCMs in the 

province of Ontario, Canada. This entails the following: (1) col- 

lecting North American Coordinated Regional Downscaling 

Experiment (NA-CORDEX) data to provide inputs for the pro- 

posed neural network based models; (2) developing MLP, 

TLFN, and NARX models to generate daily mean near-surface 

temperature; (3) evaluating the performance of MLP, TLFN 

and NARX using a case study of the Big Trout Lake station in 

Ontario, Canada. 

2. Methodology 

2.1. Multi-layer Perceptron (MLP) 

MLP is a widely-used ANN model which usually consists 

of an input layer, one or more hidden layers, and an output lay-

er (Figure 1). Each layer includes some neurons (Jiang et al., 

2018). The numbers of neurons in the input and output layers 

are determined by the numbers of elements in the external input 

array and output array of the network, respectively (Osman and 

Abdellatif, 2016). The number of neurons in the hidden layers 

are determined by the trial and error (Hammerstorm, 1993) for 

the best performing model. Different layers are connected with 

weights and biases. The connections between the layers allow 

information flow forward towards the output layer. The neuron 

network first computes the weighted sum of the inputs, z, and 

feeds z into the neurons in the hidden layer (Equation (1)). A 

nonlinear activation function f(.), is applied to z to get the out- 

put a of the neuron (Equation (2)). The network repeats the 

same process to the hidden layer (Equations (3) and (4)). Rec- 

tified linear unit (ReLU), conventional sigmoids function, hy- 

perbolic tangent function, and logistic function are examples of 

commonly used activation functions. The ultimate goal of train- 

ing a MLP is to minimize the cost function (Equation (5)), 

which measures the errors between observations and predic- 

tions for training data. A back-propagation algorithm is used to 

find the minimum cost function using the chain rule of di- 

fferentiation to calculate the partial derivative or gradient of the 

cost corresponding to the weights (Zhang et al., 2018). Back-

propagation calculates the error-derivative for the weight of 

each neuron to minimize the cost function: 
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where xi is the ith input, aj is the output of the jth neuron; wij and 

wjk represent the weight of jth neuron in the hidden layer and kth 

neuron in the output layer, respectively; and b is the bias. C 

refers to the cost of the cost function, yk is the predicted output 

and tk is the observed true value. The error-derivative for the 

weight wjk on the connection from unit k is aj ( ) / ( ).kC z  The 

error-derivative for the weight wij on the connection from unit j 

is xi ( ) / ( )jC z  (Equation (6)) (LeCun et al., 2015). Equation 

(7) shows the partial derivative of the cost function correspond- 

ing and activation function. 

 

2.2. Time-lagged Feed-Forward Neural Network (TLFN) 

TLFN is formulated based on MLP and replaces the neu- 

rons in the input layer with a memory structure, which is some- 

times called a tap delay-line, as shown in Figure 2 (Coulibaly 

et al., 2005). TLFN uses delay-line processing elements (PEs) 

by holding past samples of the input signal. The output y(n) of 

TLFN with one hidden layer is shown as Equation (8) (Cou- 

libaly, 2004): 
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where m is the size of the hidden layer, n is the time step, wj is 

the weight vector for the connection between the output layer 

and the hidden layer, and wjl is the weight matrix for the con- 

nection between the hidden layer and the input layer. f1 and f2 

are the active functions at the output layer and hidden layer, 

respectively. bo and bj are the bias terms. The input pattern x(n) 

has multiple inputs of size p (Equation (9)) and X(n) is the com- 

bined input at time step n, whose delay line with memory depth 

k (Equation (10)). x(n-1) is obtained by delaying x(n) by one 

sample: 

 

1 2 ( ) =  ( ) (( , , ...,) ))(px n x n x n x n  (9) 
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Figure 1. Structure of MLP with one input layer, one hidden 

layer(s), and one output layer. 

 

 
 

Figure 2. Structure of TLFN with one input layer, one hidden 

layer, and a delay-line with memory depth of k. (z-1 is an opera- 

tor that delays the input by one sample). (Dibike and Coulibaly, 

2006). 

 

2.3. Nonlinear Auto-Regressive Networks with Exogenous 

Inputs (NARX) 

Networks that use feedback connections, enabling infor-

mation flow laterally or backwards within the network, are 

called RNNs. NARX is a special type of RNN that creates a 

relationship between the current value of a time series and the 

predicted past values of the exogenous series, and the outputs 

are fed back to the input by a delay line (Haykin, 1998). As 

shown in Figure 3, the structure of the NARX model is similar 

to the traditional multi-layered perceptron (MLP) model. The 

NARX model can be expressed as in Equation (11) (Lin et al., 

1996): 

 

1 1( , ..., ; , ...,= , )t t t dy t t t dxy y y x x xf      (11) 

 

where xt and yt represent the input and output of the network at 

time t, and f(.) is a nonlinear function, which can be approxi- 

mated by a standard MLP network. dx and dy are the time lags 

for the input and output series (Lin et al., 1998). 

 

 
 

Figure 3. Structure of NARX network with one input layer, one 

hidden layer, and one output layer (z-1
 denotes delay for one 

time step). 

 

3. Study Area and Data Collection 

Big Trout Lake in Northern Ontario, Canada was chosen 
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to test the performance of the proposed methods. According to 

Canada’s Changing Climate Report 2019 (Bush et al., 2019), 

Northern Canada has warmed and will continue to warm at 

even more than double the global rate. Between 1948 and 2016, 

the observed changes (°C) in annual temperature in Northern 

Ontario were higher than in Southern. The Big Trout Lake sta- 

tion (53.83° N, 89.87° W) is located in the far northwestern 

region of Ontario and south of Hudson Bay. It is classified as 

having a subarctic climate, which includes year-round precipi- 

tation, short and cool summers, and long and cold dry winters 

(Tam et al., 2018), resulting in high annual variation in tempe- 

rature. The average temperature and yearly precipitation of Big 

Trout Lake are -2.7 °C and 609.1 mm. The average monthly 

temperature ranges from -23.7 to 16.2 °C. The minimum and 

maximum recorded temperature of the Big Trout Lake station 

were -47.8 °C (January 1951) and 35.6 °C (July 1955). The 

highest historical daily precipitation occurred in August 1955, 

reaching 84.1 mm. Considering the region's high variation in 

temperature and climate sensitivity, the Big Trout Lake station 

was chosen for evaluating the performance of neural networks 

methods. 

The study used daily mean temperature simulation data 

obtained from six RCMs and observation data of the Big Trout 

Lake station from 1979 to 1989. The six RCMs are each driven 

by different GCM models. They are 1) CanRCM4, CRCM5, 

and RCA4 driven by CanESM2; 2) HIRHAM5 and RCA4 dri- 

ven by EC-EARTH. 3) CRCM5 driven by MPI-ESM-LR. The 

grid resolution for each RCM is 0.44° × 0.44°. The simulated 

daily mean temperature data were downloaded from NA-COR- 

DEX archive (Mearns et al., 2017), a branch of the Interna- 

tional CORDEX Initiative (Giorgi et al., 2009; Lucas-Picher et 

al., 2012). The observed temperature data of the Big Trout Lake 

were down-loaded from the Digital Archive of Canadian 

Climatological Data provided by Environment and Climate 

Change Canada (ECCC). 

4. Neural Network Design and Training 

The neural network models in this study were developed 

with net functions in MATLAB (version R2014b). The Leven- 

berg-Marquardt backpropagation algorithm was applied for 

training the models, as it is one of the fastest back-propagation 

algorithms for feedforward networks (Hagan and Menhaj, 1994; 

Lee et al., 2016). 

Inputs to the neural networks were the simulated daily 

mean temperature of six RCMs while the output was daily 

mean near-surface temperature observed at the Big Trout Lake 

station. RCM outputs at the closest grid point to the Big Trout 

Lake station (53.76° N, 89.84° W) were used as inputs for the 

pre-diction models. The first 70% of the dataset (January 1979 

~ September 1986) were used for training the models. Then, 

the following 15% of the dataset (September 1986 ~ May 1988) 

were used to validate those models, which verified the appli- 

cability of the model. The last 15% of the dataset (May 1988 ~ 

December 1989) were used for testing, which assessed the ge- 

neralization ability of the model. The differrent parameters of 

each model were adjusted during calibration to obtain the best 

statistical agreement between observed and simulated mean 

temperature and were assessed using mean square error (MSE). 

The structure of the networks used in the study consisted 

of one input layer, one output layer, and one hidden layer. MLP 

was trained with the number of neurons ranging from 5 to 20 

and the MLP with 12 neurons was selected as it generated the 

best performing network. Both TLFN and NARX were trained 

with lag time (time delay) ranging from 1 to 3 days and the 

number of neurons ranging from 5 to 20. The TLFN model with 

5 neurons and a time lag of 3 days and NARX with 15 neurons 

and a time lag of 3 days were selected as they generated the 

best performing network. 

Performance of three neural network models was evalu- 

ated by comparing predicted results with observed temperature 

values. Statistical criterions, such as root mean square error 

(RMSE) and coefficient of determination (R2), were used for 

performance evaluation. 

5. Results and Discussion 

5.1. Neural Networks Performance 

5.1.1. MLP Performance 

The time-series plot and the scatter plot of the observation 

and prediction of daily mean temperature obtained by MLP are 

shown in Figures 4 and 5, respectively. The time-series plot 

shows that MLP could predict the seasonal pattern of daily 

mean near-surface temperature. RMSE and R2 of testing were 

6.537 °C and 0.843, respectively. The small RMSE and high R2 

values indicate that MLP performed well and could predict 

mean near-surface temperature with relatively high accuracy. 

In addition, while the observed temperature of all datasets 

varied from -38.9 to 26.1 °C, MLP could generate predictions 

ranging from -25.6 to 17.5 °C. For observations ranging from -

30 to -16 °C, MLP tended to give prediction values of around -

20 °C. For observations ranging from 12 to 26.1 °C, MLP gen-

erated prediction ranging from 10 to 17 °C, which implies that 

MLP could not capture the extreme values precisely. This may 

be due to the tendency of neural networks sacrificing variance 

to gain high RMSE. 

 

 
 

Figure 4. Time series plot of observed and predicted daily near-

surface temperature values obtained by MLP with 12 neurons. 
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Figure 5. Scatter plots of observed and predicted daily near-surface temperature values obtained by MLP with 12 neurons. 

 

Table 1. Comparison of Performance between RCMs and Neural Networks 

   RMSE (°C)   R2  

GCM RCM training validation testing training validation testing 

CanESM2 CRCM5 8.682 8.800 8.861 0.717 0.638 0.728 

CanRCM4 9.402 9.124 9.239 0.665 0.617 0.691 

RCA4 9.029 8.709 9.008 0.690 0.653 0.708 

EC-EARTH HIRHAM5 8.349 8.411 8.547 0.695 0.659 0.722 

RCA4 9.304 10.475 8.676 0.667 0.565 0.707 

MPI-ESM-LR CRCM5 8.321 9.406 8.253 0.705 0.612 0.732 

Neural Networks MLP 6.282 6.998 6.537 0.829 0.753 0.843 

TLFN 6.244 6.797 6.363 0.832 0.766 0.854 

NARX 5.966  6.882  6.345  0.849  0.761  0.856  

5.1.2. TLFN Performance 

Figures 6 and 7 show the statistical performance and time 

series plot of TLFN with a time lag of 3 days and 5 neurons. 

TLFN had similar performance with MLP and had small im- 

provement, with RMSE decreased to 6.363 °C and R2 increased 

to 0.854. This indicates that TLFN is an efficient model for cap- 

turing the changing pattern and predicting daily mean near-

surface temperature. Compared with the MLP model, TLFN 

generated predictions scattered more closely with observations 

and had a smaller range of temperature prediction from -23.9 

to 16.5 °C. For observations ranging from -30 to -20 °C, the 

over-estimated prediction errors of TLFN were smaller than 

MLP. Similar to MLP, TLFN did not capture the extreme values 

well. 

 

5.1.3. NARX Performance 

Figures 8 and 9 show that NARX performs well at gene- 

rating mean temperature prediction and could accurately pre- 

dict the changes of daily mean near-surface temperaturewith a 

low RMSE of 6.345 °C and high R2 of 0.856. This suggests that 

NARX performs the most effectively among the three in predic- 

ting daily mean near-surface temperature. The prediction range 

generated by NARX was from -25.4 to 15.7 °C; the maximum 

value was lower than the predictions generated by MLP and 

TLFN. From the scatter plot of observed and predicted tem- 

peratures shown in Figure 9, the points are scattered more den- 

sely along the diagonal line than MLP and TLFN, indicating 

that the error of prediction and observation values were smaller 

than that of MLP and TLFN. However, the accuracy of NARX 

for prediction extreme temperature values was similar to MLP 

and TLFN. 

 

 
 

Figure 6. Time series plot of observed and predicted daily near-

surface temperature values obtained by TLFN with 5 neurons 

and a time lag of 3 days. 
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Figure 7. Scatter plots of observed and predicted daily near-surface temperature values obtained by TLFN with 5 neurons and a 

time lag of 3 days. 

 

 
 

Figure 8. Time series plot of observed and predicted daily near-

surface temperature values obtained by NARX with 15 neurons 

and a time lag of 3 days. 

 

5.2. Comparison between RCMs and Neural Networks 

Table 1 shows the statistical performance of six RCMs and 

3 neural network models for training, validation, and testing. 

The RMSE of six models ranged from 8.253 to 9.239 °C and 

the R2 ranged from 0.691 to 0.732. Among the six models, 

CRCM5 derived by MPI_ESM_LR performed the best while 

CanRCM4 derived by CanESM2 had the lowest R2 and the 

highest RMSE. Neural network based models outperformed 

each individual RCM model, with RMSE decreased by appro- 

ximately 2 °C and R2 increased from 0.7 to 0.85.  

Figure 10 shows the time series plot of six RCMs and 

neural networks of winter (January and February) and sum- 

mer (July and August) 1989 predictions. The observation va- 

lues fall within the range of the RCMs, while the neural net- 

works tended to predict temperatures of -20 and 15 °C for win- 

ter and summer, respectively, with very little variance and fluc- 

tuation. For winter, three RCMs driven by Can-ESM2 pre- 

dicted relatively well with observations aligning closely to the 

RCMs predicted values. RCA4 driven by EC-EARTH perform- 

ed the worst which tended to overestimate the low temperature 

and underestimated the high temperature in winter. CRCM5 

driven by MPI-ESM-LR performed well with low error in win- 

ter. All RCMs performed better in the summer months than in 

the winter months, with observation values falling between the 

maximum and minimum prediction of 6 RCMs. However, the 

changing pattern of neural network based models was smoother 

than RCMs with small fluctuation. As neural network based 

models generate predictions with smooth variation pattern, 

they tend to have smaller RMSE and higher R2 than RCMs. 

 

5.3. Comparison of Performance between MLP, TLFN, and 

NARX 

The RMSE for all three methods ranged from 6.345 to 

6.537 °C and R2 were above 0.84, indicating that the three neu- 

ral networks could provide reliable temperature forecasts for 

Big Trout Lake. The nonlinear transfer function associated with 

each hidden and output node allows ANNs to approximate 

highly nonlinear relationships without a prior assumption, 

which leads to relatively high accuracy in prediction.  

In terms of the structure of neural networks, TLFN and 

NARX were built based on the structure of MLP. These two 

methods incorporate antecedent predictor values as input to 

improve forecasting. Although all three methods had similar 

performance with no significant differences in terms of RMSE 

and R2, TLFN and NARX had a smaller error in prediction than 

MLP. Thus, incorporating antecedent predictor values as input 

would slightly improve the performance of the neural network. 

When compared with TLFN, NARX not only incorporates pre- 

vious RCM data into the network but also considers previously 

predicted values. However, the time required to train the 

NARX model and generate predictions was much longer than 

that of TLFN. As TLFN has similar capability to process and 

predict temporal patterns as RNN while having a less complex 

structure being less computationally demanding, TLFN is re- 

commended for the prediction of temperature values in areas 

where the climate is similar to the study area. This finding is 

consistent with the results from previous studies on using 

neural networks for temperature predictions (Coulibaly et al., 

2001; Coulibaly et al., 2005). 
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Figure 9. Scatter plot of observed and predicted daily near-surface temperature values obtained by NARX with 15 neurons and a 

time lag of 3 days. 

 

 
 

Figure 10. Time series plot of 6 RCMs and neural networks of (a ~ c) winter and (d ~ f) summer in 1989. 
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6. Conclusions 

The study investigated the applicability of three neural 

networks (MLP, TLFN, and NARX) for daily mean near-

surface temperature prediction using NA-CORDEX simulation 

output. A case study of Big Trout Lake in Ontario, Canada was 

carried out to demonstrate the applicability and performance of 

the three models. Daily mean temperatures simulated by six 

RCMs from 1979 to 1989 were applied for training, validation, 

and testing. The temperature values predicted by MLP, TLFN, 

and NARX were compared with the observations from the Big 

Trout Lake monitoring station. The performance of neural net- 

work models was compared with six individual RCMs. 

The results show that MLP, TLFN, and NARX are effec-

tive methods for predicting daily mean temperature. Based on 

the RMSE and R2, all three methods had similar performance, 

with RMSE ranged from 6.345 to 6.537 °C and R2 above 0.84. 

It is worth mentioning that the differences in prediction perfor- 

mance among these three models were not significant in terms 

of RMSE and R2. Neural-network based temperature prediction 

models outperformed individual RCM, with RMSE decreased 

by about 2 °C and R2 increased from 0.7 to 0.85. Neural net- 

work models generated smoother predictions with less fluctua- 

tion than RCMs. It was also found that MLP, TLFN, and 

NARX could not capture ‘extreme’ values below -20 °C accu- 

rately. Those values appeared during a similar time period each 

year (i.e., winter). Thus, further work could be done to develop 

prediction models for a seasonal time period which have diffe- 

rent temperature range. 

 

Acknowledgements. This research was supported by the National Key 

Research and Development Plan (2016YFA0601502). 

References 

Barfus, K. and Bernhofer, C. (2014). Assessment of GCM perfor- 

mances for the Arabian Peninsula, Brazil, and Ukraine and indi- 

cations of regional climate change. Environmental Earth Sciences, 

72(12), 4689-4703. https://doi.org/10.1007/s12665-014- 3147-3 

Bush, E. and Lemmen, D.S., editors (2019): Canada’s Changing 

Climate Report; Government of Canada, Ottawa, ON. PP. 444. 

https://changingclimate.ca/CCCR2019 

Caswell, J.M. (2014). A Nonlinear Autoregressive Approach to 

Statistical Prediction of Disturbance Storm Time Geomagnetic 

Fluctuations Using Solar Data. Journal of Signal and Information 

Processing, 05(02), 42-53. https://doi.org/10.4236/jsip.2014.52007 

Chan, R.W., Yuen, J.K., Lee, E.W., and Arashpour, M. (2015). Appli- 

cation of Nonlinear-Autoregressive-Exogenous model to predict the 

hysteretic behaviour of passive control systems. Engineering Struc- 

tures, 85, 1-10. https://doi.org/10.1016/j.engstruct.2014.12.007 

Çoruh, S., Geyikçi, F., Kılıç, E., and Çoruh, U. (2014). The use of 

NARX neural network for modeling of adsorption of zinc ions using 

activated almond shell as a potential biosorbent. Bioresource 

Technology, 151, 406-410. https://doi.org/10.1016/j.biortech.2013. 

10.019 

Coulibaly, P. (2004). Downscaling daily extreme temperatures with 

genetic programming. Geophysical Research Letters, 31(16). https: 

//doi.org/10.1029/2004GL020075 

Coulibaly, P., Anctil, F., Aravena, R., and Bobée, B. (2001). Artificial 

neural network modeling of water table depth fluctuations. Water 

Resources Research, 37(4), 885-896. https://doi.org/10.1029/2000 

WR900368 

Coulibaly, P., Anctil, F., and Bobee, B.J.J.o.H.E. (2001). Multivariate 

reservoir inflow forecasting using temporal neural networks. 
Journal of Hydrologic Engineering, 6(5), 367-376. https://doi.org/ 

10.1061/(ASCE)1084-0699(2001)6:5(367) 

Coulibaly, P., Dibike, Y.B., and Anctil, F. (2005). Downscaling Preci- 

pitation and Temperature with Temporal Neural Networks. Journal 

of Hydrometeorology, 6(4), 483-496. https://doi.org/10.1175/JHM 

409.1 

Dhussa, A.K., Sambi, S.S., Kumar, S., Kumar, S., and Kumar, S. 

(2014). Nonlinear Autoregressive Exogenous modeling of a large 

anaerobic digester producing biogas from cattle waste. Bioresource 

Technology, 170, 342-349. https://doi.org/10.1016/j.biortech.2014. 

07.078 

Diaconescu, E. (2008). The use of NARX neural networks to predict 

chaotic time series. Wseas Transactions on Computer Research, 

3(3), 182-191. 

Dibike, Y.B. and Coulibaly, P. (2006). Temporal neural networks for 

downscaling climate variability and extremes. Neural Networks, 

19(2), 135-144. https://doi.org/10.1016/j.neunet.2006.01.003 

Dibike, Y.B., Solomatine, D., and Abbott, M.B. (1999). On the encap- 

sulation of numerical-hydraulic models in artificial neural network. 

Journal of Hydraulic Research, 37(2), 147-161. https://doi.org/10. 

1080/00221689 909498303 

ECCC. Digital Archive of Canadian Climatological Data. http:// 

climate.weather.gc.ca/historical_data/search_historic_data_e.html 

Giorgi, F., Jones, C., and Asrar, G.R. (2009). Addressing climate infor- 

mation needs at the regional level: the CORDEX framework. World 

Meteorological Organization (WMO) Bulletin, 58(3), 175. 

Hagan, M.T., and Menhaj, M.B. (1994). Training feedforward net- 

works with the Marquardt algorithm. IEEE Transactions on Neural 

Networks, 5(6), 989-993. https://doi.org/10.1109/72.329 697 

Hammerstorm, D. (1993). Working with neural networks. IEEE 

Spectrum, 46-53. https://doi.org/10.1109/6.222230 

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation: 

Prentice Hall PTR. 

Huo, A., and Li, H. (2012). Assessment of climate change impact on 

the stream-flow in a typical debris flow watershed of Jianzhuang- 

cuan catchment in Shaanxi Province, China. Environmental Earth 

Sciences, 69(6), 1931-1938. https://doi.org/10.1007/s12665-012-

2025-0 

Jiang, W., He, G., Long, T., Ni, Y., Liu, H., Peng, Y., Lv, K., and Wang, 

G. (2018). Multilayer perceptron neural network for surface water 

extraction in Landsat 8 OLI satellite images. Remote Sensing, 10(5), 

755. https://doi.org/10.33 90/rs10050755 

Karl, T.R., Melillo, J.M., and Peterson, T.C. (2009). Global Climate 

Change Impacts in the United States. Cambridge University Press. 

Kumar, A., Mitra, A.K., Bohra, A.K., Iyengar, G.R., and Durai, V.R. 

(2012). Multimodel ensemble (MME) prediction of rainfall using 

neural networks during monsoon season in India. Meteorological 

Applications, 19(2), 161-169. https://doi.org/10.1002/met.254 

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 

521(7553), 436-444. https://doi.org/10.1038/nature14539 

Lee, C.C., Sheridan, S.C., Barnes, B.B., Hu, C., Pirhalla, D.E., 

Ransibrahmanakul, V., and Shein, K. (2016). The development of a 

non-linear autoregressive model with exogenous input (NARX) to 

model climate-water clarity relationships: reconstructing a histori- 

cal water clarity index for the coastal waters of the southeastern 

USA. Theoretical and Applied Climatology, 130(1-2), 557-569. 

https://doi.org/10.1007/s00704-016-1906-7 

Li, Z., Huang, G.H., Wang, X.Q., Han, J.C., and Fan, Y.R. (2016). 

Impacts of future climate change on river discharge based on 

hydrological inference: A case study of the Grand River Watershed 

in Ontario, Canada. Science of the Total Environment, 548, 198-210. 

https://doi.org/10.1016/j.scitotenv.2016.01.002 



Li et al. / Journal of Environmental Informatics Letters 2(1) 10-18 (2019) 

18 

 

Lin, T., Horne, B.G., and Giles, C.L. (1998). How embedded memory 

in recurrent neural network architectures helps learning long-term 

temporal dependencies. Neural Networks, 11(5), 861-868. https:// 

doi.org/10.1016/S0893-6080(98)00018-5 

Lucas-Picher, P., Somot, S., Déqué, M., Decharme, B., and Alias, A. 

(2012). Evaluation of the regional climate model ALADIN to 

simulate the climate over North America in the CORDEX frame- 

work. Climate Dynamics, 41(5-6), 1117-1137. https://doi.org/10. 

1007/s00382-012-1613-8 

Mearns, L., McGinnis, S.; Korytina, D., Arritt, R., Biner, S., Bukovsky, 

M., Chang, H., Christensen, O., Herzmann, D., Jiao, Y.J., Kharin, 

Sl., Lazare, M., Nikulin, G., Qian, M.W., Scinocca, J., Winger, K., 

Castro, C., Frigon, A. and Gutowski, W. (2017). The NA-CORDEX 

dataset, version 1.0. NCAR Climate Data Gateway, Boulder CO. 

https://doi.org/10.5065/D6SJ1JCH 

Osman, Y.Z. and Abdellatif, M.E. (2016). Improving accuracy of 

downscaling rainfall by combining predictions of different stati- 

stical downscale models. Water Science, 30(2), 61-75. https://doi. 

org/10.1016/j.wsj.2016.10.002 

Palmer, T. N., Doblas-Reyes, F. J., Hagedorn, R., and Weisheimer, A. 

(2005). Probabilistic prediction of climate using multi-model 

ensembles: from basics to applications. Philosophical Transactions 

of the Royal Society B: Biological Sciences, 360(1463), 1991-1998. 

https://doi.org/10.1098/rstb. 2005.1750 

Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of 

climate change impacts across natural systems. Nature, 421(6918), 

37-42. https://doi.org/10.1038/nature01286 

Ragone, F., Lucarini, V., and Lunkeit, F. (2015). A new framework for 

climate sensitivity and prediction: a modelling perspective. Climate 

Dynamics, 46(5-6), 1459-1471. https://doi.org/10.1007/s00382-015 

-2657-3 

Rahimi, Z., Shafri, H., and Norman, M. (2018). A GNSS-based 

weather forecasting approach using Nonlinear Auto Regressive 

Approach with Exogenous Input (NARX). Journal of Atmospheric 

and Solar-Terrestrial Physics, 178, 74-84. https://doi.org/10.101 

6/j.jastp.2018.06.011 

Sfetsos, A., and Coonick, A.H. (2000). Univariate and multivariate 

forecasting of hourly solar radiation with artificial intelligence 

techniques. Solar Energy, 68(2), 169-178. https://doi.org/10.10 

16/S0038-092X(99)00064-X 

Shen, H.Y. and Chang, L.C. (2013). Online multistep-ahead inunda- 

tion depth forecasts by recurrent NARX networks. Hydrology and 

Earth System Sciences, 17(3), 935-945. https://doi.org/10.5194/ 

hess-17-935-2013 

Siegelmann, H.T., Horne, B.G., and Giles, C.L. (1997). Computational 

capabilities of recurrent NARX neural networks. IEEE Transactions 

on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2), 

208-215. https://doi.org/10.1109/3477.558 801 

Spak, S., Holloway, T., Lynn, B., and Goldberg, R. (2007). A compa- 

rison of statistical and dynamical downscaling for surface tempe- 

rature in North America. Journal of Geophysical Research, 112(D8). 

https://doi.org/10.1029/2005JD006712 

Spak, S., Holloway, T., Lynn, B., and Goldberg, R. (2018). The fate of 

Hudson Bay lowlands palsas in a changing climate. Arctic, Antarctic, 

and Alpine Research, 46(1), 114-120. https://doi.org/10.1657/1938-

424 6-46.1.114 

Thomson, M.C., Doblas-Reyes, F.J., Mason, S.J., Hagedorn, R., 

Connor, S.J., Phindela, T., Morse, A.P., and Palmer, T.N. (2006). 

Malaria early warnings based on seasonal climate forecasts from 

multi-model ensembles. Nature, 439(7076), 576-579. https://doi. 

org/10.1038/nature04503 

Lin, T., Horne, B.G., Tino, P., and Giles, C.L. (1996). Learning long-

term dependencies in NARX recurrent neural networks. IEEE 

Transactions on Neural Networks, 7(6), 1329-1338. https://doi.org 

/10.1109/72.548162 

Von Storch, H. (2000). Review of empirical downscaling techniques. 

In Regional climate development under global warming. General 

technical report no. 4. Conference proceedings regclim spring 

meeting Jevnaker, Torbjornrud, Norway, 2000.  

Wagner, T., Themeßl, M., Schüppel, A., Gobiet, A., Stigler, H., and 

Birk, S (2017). Impacts of climate change on stream flow and hydro 

power generation in the Alpine region. Environmental Earth 

Sciences, 76(1), 4. https://doi.org/10.1007/s12665-016-6318-6 

Wilby, R.L. and Wigley, T.M.L. (1997). Downscaling general circula- 

tion model output: a review of methods and limitations. Progress in 

Physical Geography: Earth and Environment, 21(4), 530-548. 

https://doi.org/10.1177/030913339702100403 

Wilby, R.L., Wigley, T.M.L., Conway, D., Jones, P.D., Hewitson, B.C., 

Main, J., and Wilks, D.S. (1998). Statistical downscaling of general 

circulation model output: A comparison of methods. Water 

Resources Research, 34(11), 2995-3008. https://doi.org/10.1029/98 

WR02577 

Xia, Y., Chen, B., Weng, S., Ni, Y.Q., and Xu, Y.L. (2012). Tempera- 

ture effect on vibration properties of civil structures: a literature 

review and case studies. Journal of Civil Structural Health Moni- 

toring, 2(1), 29-46. https://doi.org/10.1007/s13349-011-0015-7 

Zhang, D., Lindholm, G., and Ratnaweera, H. (2018). Use long short-

term memory to enhance Internet of Things for combined sewer 

overflow monitoring. Journal of Hydrology, 556, 409-418. https:// 

doi.org/10.1016/j.jhydrol.2017.11.018 

 

 

 

 

 

 


