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ABSTRACT. Influent flow rate is a crucial parameter closely related to the plant-wide control of wastewater treatment plants (WWTPs). 

In this study, a random forest (RF) model and a multi-layer perceptron (MLP) model are developed for hourly influent flow rate prediction 

at a confidential WWTP in Canada. Both models perform well on predicting influent flow rate one-step ahead. The coefficient of deter-

mination (R2) values of MLP and RF for the testing data set are 0.927 and 0.925, respectively. Furthermore, the multi-step ahead predic-

tion accuracy of the proposed models is discussed. To improve the multi-step ahead prediction accuracy of the RF model, time-tag infor-

mation is transformed to numerical values and then fed into the RF model as input. The R2 values of the RF model for the testing data 

set with and without time-tag information are 0.334 and 0.811, respectively. The results show that the RF model’s performance for multi-

step ahead prediction is heavily affected by the time-tag information. Including time-tag information as input could dramatically improve 

the multi-step ahead prediction accuracy. In this study, the RF model shows more robust performance than the MLP model on solving 

short-term wastewater influent prediction problems. 
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1. Introduction 

Influent flow rate is a crucial parameter which significant-

ly affects the management and operation of wastewater treat-

ment plants (WWTPs). Wastewater characteristics, such as to-

tal suspended solids (TSS) and biochemical oxygen demand 

(BOD), are strongly correlated to influent flow rate (Bechmann 

et al., 1999). To maintain stable effluent quality, it is critical to 

adjust the treatment process according to the influent flow rate, 

as well as the pollutant concentrations of the influent (Wei and 

Kusiak, 2015).  

In recent decades, studies on plant-wide control of WW-

TPs have gained a lot of attention. Alongside the development 

of sensor technology, plant-wide monitoring networks have been 

widely implemented, and feedback control of wastewater treat-

ment unit processes has been widely used at WWTPs around 

the world (Olsson et al., 1998; Jeppsson et al., 2002; Dürren-

matt and Gujer, 2012; Campisano et al., 2013). These monitor-

ing networks can provide abundant data for the feedback con-

trol of unit processes with fast dynamics (Ma et al., 2014). How-

ever, control delay is a common challenge for unit processes 

with slow dynamics, such as biochemical treatment processes 
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(Schütze et al., 2004). For relatively slow treatment processes, 

feed-forward signals are needed for supporting realtime feed-

back control, especially when there are disturbances of various 

time scales (Shen et al., 2009; Ma et al., 2014). Therefore, it is 

desirable to know the influent flow rate in advance, and this is 

when the prediction of the influent flow rate becomes valuable.  

Previously, models of different complexity levels have been 

studied for multi-step ahead prediction (Ismail et al., 2018). 

However, as the prediction horizon increases, the prediction ac-

curacy of those models usually decreases drastically. Wei and 

Kusiak (2015) compared the performance of a Multi-layer Per-

ceptron (MLP) model and a Dynamic Neural Network (DNN) 

model on short-term prediction of influent flow rate. The re-

sults showed that the DNN model has a better performance than 

the MLP model when it comes to a longer prediction horizon. 

On the other hand, a modified long short-term memory (LS-

TM) model focusing on long-term prediction was studied by 

Ismail et al. (2018). The results showed that although the LS-

TM model and the recurrent neural network (RNN) model 

perform better than the traditional MLP model on short-term 

prediction, the prediction accuracy decreases when the predic-

tion horizon expands beyond a few time steps in the future. 

Overall, many models were proposed for short-term influent 

flow rate prediction and neural network models such as MLP, 

DNN and LSTM have been widely studied for short-term or 

even long-term prediction. Although these neural network mod- 

els are able to partly address the multi-step ahead prediction 
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problems, they are also facing many challenges, such as time-

consuming calibration and overfitting problems. 

Meanwhile, the Random Forest (RF) model has gained a 

lot of attention recently, and it has been applied in a wide range 

of areas (Pal, 2005; Díaz-Uriarte and Alvarez de Andrés, 2006; 

Abdel-Rahman et al., 2013). In comparison with neural net-

work models, RF has a distinct advantage in avoiding overfit-

ting because of the bootstrap method it uses. Additionally, the 

RF model is able to illustrate the contribution of each input var-

iable to the predicted target. However, as an effective and pro-

mising machine learning model, the use of this promising 

method in wastewater influent prediction is limited. To the best 

of the authors’ knowledge, RF has not yet been used for the 

multi-step ahead prediction of wastewater inflow rate.   

Therefore, the objective of this study is to explore the po-

tential of RF for short-term wastewater influent flow rate pre-

diction. This entails the following four tasks: (1) developing RF 

and MLP models with different prediction horizons for influent 

flow rate prediction; (2) applying the developed models and 

predicting the hourly influent flow rate for different prediction 

horizons at a real-world WWTP; (3) evaluating the perfor-

mance of the proposed models using different statistical crite-

ria; (4) exploring the approaches to improve RF’s performance 

for multi-step ahead prediction. This study will provide valu- 

able decision support for wastewater treatment process control. 

It will also provide an insight into the application of RF models 

in short-term wastewater prediction. 

2. Data and Study Area 

A confidential WWTP is used in this study to illustrate the 

performance of the proposed short-term influent flow rate pre-

diction models. The inflow of this WWTP consists of sanitary 

sewage, infiltration, a small portion of stormwater. The influent 

flow rate data were provided by Hydromantis, which is a soft-

ware development company in the water and wastewater sector. 

Influent flow rate data with 15-minute intervals from 1st No-

vember 2015 to 31st October 2016 are collected. Then the data 

with 15-minute intervals are resampled to hourly data, resulting 

in a total of 8,783 samples. The time series plot of hourly influ-

ent flow rate is presented in Figure 1. Meanwhile, hourly weath- 

er data are provided by Dark Sky, a company that specializes 

in weather forecasting and visualization. The weather data are 

matched with the hourly influent flow rate data with the same 

data length and frequency. 

 

 
 

Figure 1. Time series of hourly influent flow rate at the confi-

dential WWTP. 

3. Methodology 

3.1. Random Forests 

The random forest (RF) method was systematically pro-

posed by Breiman in 2001. A RF is an ensemble of decision 

tree classifiers (Breiman, 2001). Each decision tree is con-

structed using parts of samples taken from the original data set 

through a bootstrap method. After forest is developed, each de-

cision tree can make a prediction, and then a majority vote or 

an average value can be taken as the predicted value of the RF 

(Figure 2).

 

 
 

Figure 2. Development process of a RF model. 
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There are two types of decision trees (classification tree 

and regression tree). They can be used to solve classification and 

regression problems, respectively. Decision trees deal with the 

prediction of an output variable y given a vector of predictor 

variables x. If y is taking a real value which is continuous or dis-

crete (e.g., the weight of a car or the number of accidents), the 

problem is regression. Otherwise, if the domain of y is a finite 

set of unordered values (e.g., the type of car or its country of 

origin), the problem is classification (Loh, 2008). In this study, 

our target is influent flow rate, which means regression trees 

are performed. The development process of a RF is summarized 

as follows: 

1) For an original training data set including A samples, A 

samples are randomly drawn, with replacement, from the 

original data set. These A samples form a new training set 

for growing a regression tree.  

2) A classification and regression tree (CART) algorithm 

with mean square error (MSE) as the split criterion is used 

to build the regression tree. CART is a procedure for bina-

ry recursive partitioning (Speybroeck, 2012). Readers are 

referred to Breimin (1984) and Steinberg (2015) for more 

details about CART. The number of trees in the forests (n) 

is an important parameter. The values of n is determined by 

a grid search cross validation method in this study. Com-

bined with cross validation and given a prior range of n, 

this grid search method is able to obtain the best value of 

n by evaluating the performance of each value among the 

given ranges. Other parameters that can affect model per-

formance, such as the number of variables tried at each 

split node (m), can be also determined by the grid search 

cross validation method. It is also worth mentioning that 

there is no pruning process during constructing each regres-

sion tree, and each regression tree is grown to the largest 

in this study.  

3) After the regression trees are built, each tree can produce 

one predicted value. Thus, n predicted values are gener-

ated by n trees. 

4) In this study, the average value of the n predicted values is 

taken as the final predicted value of the RF. 

3.2. Multi-Layer Perceptron 

Artificial neural networks are proved to be a useful tool for 

predictive modeling in many disciplines (Paegelow, 2018). In 

this study, a typical artificial neural network model called 

multi-layer perceptron (MLP) is tested and compared with the 

RF model. The MLP model can approximate virtually any mea-

surable function and there is no assumptions regarding the dis-

tribution of input data (Gardner and Dorling, 1998). It is widely 

used in hydrologic modeling and has been proved to be effect-

tive (Coulibaly and Evora, 2007; Solaimany-Aminabad et al., 

2014; Wei and Kusiak, 2015). In comparison with other tra-

ditional data-driven models, such as dynamic neural networks 

(DNN) and long short-term memory (LSTM) neural networks, 

MLP is easier to construct and tune, which makes it ideal to be 

used as a baseline model option for comparison purposes. 

MLP consists of multiple layers of neurons that interact 

with weighted connections (Pal, 1992). Generally, an MLP 

model includes an input layer, a number of hidden layer(s), and 

an output layer. The number of hidden layers (nl) and the number 

of neurons in each layer (ni) are two essential parameters of 

MLP. How to optimize nl and ni has been extensively studied. 

Many previous studies suggested that one hidden layer is suf-

ficient for most problems (Rajasekaran and Amalraj, 2002; Xu, 

2008; Panchal et al., 2011; Student, 2012). As for determining 

the value of ni, there are many rule-of-thumb methods. For 

example, ni should be 2/3 the size of the input layer, plus the 

size of the output layer. Meanwhile, other approaches such as 

Akaike’s Information Criterion can also be adopted (Panchal et 

al., 2011). In this study, the values of nl and ni were determined 

according to previous studies and combined with the grid search 

method mentioned in section 3.1. Since weights are the key to 

the MLP models, the process of determining weights for an 

MLP model which contains one hidden layer and one neuron is 

presented in Figure 3 and is articulated in three steps: 

1) Initial weights close to zero are randomly assigned to the 

input variables. 

2) Through an activation function, the cost function related 

to the input variables is calculated using: 
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where f(x) is the activation fucntion; J is the cost function; 

m is the number of training samples; xi is the ith input var-

iable; yi is the ith predicted value; and iy is the ith observed 

value. 

3) A gradient descent algorithm is employed to find the opti-

mal value of the cost function. Then the corresponding op-

timal weights can be updated. The descent range (D) can 

be determined as follows: 

i

J
D

x






  (3) 

where α is the learning rate. 

3.3. Model Training and Testing 

Both the RF and the MLP models are performed for 

influent flow rate prediction at a confidential WWTP. Firstly, 

75% of the hourly data samples are marked as training data and 

the other 25% of samples are testing data. It is worth mention- 

ing that, in this study, three-folds cross validation is used to 

tune the parameters during the training process. Both weather 

information and historic influent flow rate data are used as 

model input. A single-step ahead model (predicting the influent 

flow rate at time t + 1) is built, using the weather information 

at time t, as well as the historic influent flow rate at time t, t – 

1, and t - 2, as input data. The previous study of Wei and Kusiak 
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(2015) indicated that including influent flow data five or more 

time steps back could hardly improve the model’s prediction 

accuracy. On the contrary, it may lead to significant computa-

tion and thus decrease the modeling efficiency. Furthermore, 

according to the correlation analysis, influent flow rate at time 

t, t - 1, and t - 2 show the highest correlation with the influent 

flow rate at time t. Thus, only 1-, 2-, and 3-hour prior influent 

flow rate data are used as training input in this study. 

 

 
 

Figure 3. Schematic diagram of a hidden neuron in an MLP 

model. xi is the ith input variable, wi is the ith weight, and y is 

the output target. 

 

RF and MLP models are also built for predicting the influ-

ent flow rate at t + 2, t + 3, t + 4, t + 5, t + 6, t + 24, t + 48, 

and t + 72 using the same model development procedures de-

scribed above. These models are mainly used for testing the per-

formance of wastewater influent flow rate prediction with dif-

ferent prediction horizons. For different prediction horizon mod-

els from t + 1 ~ t + 72, the input variables are the same, in-

cluding weather variables (temperature, humidity, precipitation, 

wind speed, and wind bearing) at time t and historic influent 

flow rate at t, t - 1, and t - 2. 

4. Results and Discussion 

4.1. Single-Step Ahead Prediction Results 

For the single-step ahead RF model, a total of 8,779 sam-

ples is used for training and testing. Figure 4 is the scatter plot 

of predicted and observed influent flow rate. The root mean 

square errors (RMSE) and coefficient of determination (R2) val-

ues are also showed in the figure. It is indicated that, overall, 

the proposed single-step ahead RF model is satisfactory. How-

ever, it can be observed that for there is an underestimation 

when the observed value goes above 3,500 m3/hr. This may be 

because the range of predicted values heavily depends on the 

range of observed values in the training set, which limits the 

model’s capability of capturing extreme values. More specifi-

cally, in this study, the values of training samples range from 

1,500 m3/hr to 3,500 m3/hr, so the predicted values are more 

likely to fall in this range. This implies that it is very important 

to increase the representativeness and diversity of training sam-

ples when building RF models.  

For the single-step ahead MLP model, the same 8,779 

samples are used for training. The MLP model with the best 

testing results has one hidden layer and 25 hidden neurons. 

Figure 5 is the scatter plot of predicted and observed influent 

flow rate during the training and testing periods. It can be found 

that, though some extreme points are not predicted precisely, 

this single-step ahead model shows an overall satisfactory pre- 

diction performance, with an R2 value of 0.927 during the test- 

ing period. 
 

 
 

 
 

Figure 4. Training (a) and testing (b) results of the RF model 

with a prediction horizon of t + 1. 

4.2. Multi-Step Ahead Prediction Results 

Multi-step ahead models based on MLP and RF are built 

to describe the relationships between the input variables at time 

t and the output target at time t + n . Overall, the prediction ac-

curacy worsens significantly as the prediction horizon increases. 

Figure 6 shows the changes of R2 and RMSE results during the 

testing period as the prediction horizon increases. The RMSE 

of MLP model increases from 141.47 to 508.60 when the pre-

diction horizon changes from t + 1 to t + 6. Meanwhile, the val-

ue of R2 decreases dramtically from more than 0.92 to less than 

0.18. For the RF model, RMSE increses from 142.54 to 446.20 

and R2 decreases from 0.93 to 0.33. Moreover, the increase of 

prediction horizon has a stronger negative impact on the MLP 

method than the RF method. 

Interestingly, when the time horizon changes to t + 24, t + 
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48, and t + 72, the performance of both methods improve slight-

ly in terms of RMSE and R2. This indicates that the influent 

flow rate follows a recurring daily pattern. 

 

 
 

 
 

Figure 5. Training (a) and testing (b) results of the MLP mod-

el with a prediction horizon of t + 1. 

4.3. Discussion on Improving Multi-Step Prediction Accu- 

racy 

To improve the accuracy of multi-step prediction, many 

strategies have been employed. For instance, in the field of neu-

ral networks, dynamic neural network (DNN) models and long 

short-term memory network (LSTM) models show better per-

formance than the traditional MLP method for multi-step ahead 

prediction (Wei and Kusiak, 2015; Ismail et al., 2018). How-

ever, for the RF method, discussions on how to improve the ac-

curacy of multi-step ahead prediction are limited. Therefore, pos-

sibilities to improve multi-step ahead prediction are explored.  

The reason why DNN and LSTM generally performs bet-

ter while solving multi-step ahead prediction problems is that 

these models include time series information as input variables 

and they are able to address time series information in an effi-

cient manner. Inspired by this, time-tag information is further 

introduced to the proposed RF model in this study. The time 

series information is first transformed from time tags to nu-

meric values, such as hour of the day (1, 2, … , 24), day of the 

week (1, 2, … , 7), and month of the year (1, 2, … , 12). Then, 

these values are introduced to the RF model as input features. 

To demonstrate the feasibility of this method, the RF model 

with a prediction horizon of t + 6 is rebuilt. Weather and flow 

data at time t, together with the time-tag information, are used 

as input to predict the output target at time t + 6. Figure 7 shows 

the performance of the RF models before and after including 

time-tag information as input. It can be observed that the 

accuracy of the RF model improves dramatically after includ-

ing the time-tag information. The RMSE value decreases from 

436.21 to 228.13, while the R2 value increases from 0.33 to 

0.81. The main reason for the improvement is that the time-tag 

information enables the RF model to find the data pattern more 

effectively and address time series data more properly. Take the 

prediction of the influent flow rates at 9:00 am on Monday 

mornings for example. After introducing the time-tag informa-

tion, such as hour of the day (9), day of the week (1), RF models 

tend to classify all flow rate at 9:00 am on Monday mornings 

into the same subset. Thus, the data pattern can be better des-

cribed using the resulted regression trees in the RF, and the pre-

diction accuracy can be improved. 

 

 
 

 
 

Figure 6. Changes of R2 (a) and RMSE (b) as prediction hori-

zon increases. 
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Figure 7. Performance of RF models with a prediction hori-

zon of t + 6: (a) before adding time-tag information and (b) 

after adding time-tag information. 

5. Conclusions 

In this study, a number of RF and MLP models were de-

veloped for short-term hourly wastewater influent flow rate pre-

diction at a confidential WWTP in Canada. The proposed mod-

els were both able to capture the nonlinear weather-flow rela-

tionships for single-step ahead prediction. However, the accu-

racy of multiple-step ahead prediction were unsatisfactory. To 

address this issue, time-tag information, such as hour of the day, 

day of the week, and month of the year, were transformed into 

numeric values to be included as training inputs for the RF mod-

el. The RF model that includes time-tag information was tested 

and compared with the RF model built in the traditional way. 

For six-step ahead prediction, the root mean square error (RM-

SE) value decreased from 436.21 to 228.13; while the coeffi-

cient of determination (R2) increased from 0.33 to 0.81. The 

results indicated that including time-tag information could help 

enhance RF’s multi-step ahead prediction accuracy. For future 

studies, more methods to decode time series information and 

improve RF’s performance should be explored. 
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