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ABSTRACT. Frequently occurring ice jams often cause concern in northern regions. Breakup timing is directly related to emergency 

responses preparation and thus its early accurate forecasting is beneficial to ice-related flooding management. The stepwise cluster 

analysis (SCA) is a non-parameter regression method, which generates a classification tree in the sense of probability through cutting or 

merging operations according to certain statistic criteria. To enhance SCA’s predictive performance, a SCA ensemble (SCAE) method is 

developed and applied to forecasting of annual river ice breakup dates (BDs). In detail, the SCA is employed as a base model at the lower 

level while the simple average method is selected as combining models at the upper level. The SCA base models are selected according 

to different performance selection criteria and searched for further combination. A site on a representative river prone to river ice flooding 

in Alberta, Canada is selected to demonstrate the effectiveness of the proposed SCAE. The results mainly show that: the SCA base 

models with multiple combinations of inputs and internal parameters are able to predict the BDs with good performances (the highest 

average of correlation coefficients for training can be 0.958); the optimal SCA base model has three inputs, which indicates that the 

temperatures before breakup and just after freeze-up as well as the maximum of water flow in March are relatively important indicators 

of BD. The optimal SCAE, including base models from different performance selection criteria, has the lowest average of root mean 

squared error, which improves upon the optimal SCA base model by 25.3%. It indicates the different model selection criteria do improve 

the diversity and thus further help to improve the performance of ensemble models. This first application of the SCAE to river ice 

forecasting highlights the possibility of using the ensemble learning paradigm to enhance the SCA. The potential applications of the 

SCAE to other forecasting problems are expected. 
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1. Introduction 

Long-term river flow patterns are affected by climate 

change and anthropogenic stressors (e.g. flow regulation and 

water usage). As an important annual hydrologic event in ea-

ch spring, northern river ice breakup occurs due to warming 

temperatures and rising water flows (Beltaos, 2000; Beltaos 

and Prowse, 2009). When break-up conditions favor the de-

velopment of ice jams, sudden extreme flooding may occur at 

certain reaches. The river ice break-up forecasting models are 

useful tools to support flooding management. Among the 

forecasted variable of interest, breakup timing is directly re-

lated to emergency responses preparation and thus its early 

accurate forecasting is beneficial to ice-related flooding man- 

agement. Previously, relatively limited data-driven models, such  
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as empirical equations (Gao et al., 2012), artificial neural net- 

works (Wang et al., 2008; Zhao et al., 2012) and support vector 

machines (Zhou et al., 2009) were developed for river ice tim- 

ing forecasting. This is because the river ice forecasting task is 

a challenge due to the complicated interactions between weath- 

er and upstream-downstream river ice conditions (Mahabir et 

al., 2006; Hicks, 2009). Furthermore, it would be more chal- 

lenging because of scarce ice data and inherent uncertainty 

caused by the limited and difficult observation conditions. 

The stepwise cluster analysis (SCA) is a non-parameter re- 

gression method. In SCA, cutting or merging operations ac- 

cording to certain statistic criteria are implemented to generate 

a classification tree in the sense of probability. The SCA tree is 

able to explicitly describe nonlinear relationships among con- 

tinuous and/or discrete variables. Nevertheless, besides its cal- 

culation complexity, the performance of the SCA is sensitive to 

its inputs and internal parameters; the difference within leaf 

clusters of a SCA tree is usually not well described. The SCA 

has been applied to various water resources and environmental 

management problems, such as urban air quality prediction 

(Huang, 1992), lung cancer diagnosis (Ren et al., 1997), waste 
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treatment process simulation (Sun et al., 2009; Sun et al., 2011), 

groundwater bioremediation optimization (Huang et al., 2006; 

Qin et al., 2007; He et al., 2008b; Wang et al., 2012; Zhao et 

al., 2017), open water forecasting (Fan et al., 2015; Li et al., 

2015; Han et al., 2016; Zhuang et al., 2016b; Cheng et al., 2016; 

Fan et al., 2017;) and climate model downscaling (Wang et al., 

2013; Zhuang et al., 2016a; Zhai et al., 2019). However, few 

applications of SCA to river ice forecasting are reported. Mean- 

while, it has been reported that stacking ensemble learning can 

improve the overall performance through effective combinations 

of different base models (Erdal and Karakurt, 2013; Sun and 

Trevor, 2017; Sun and Trevor, 2018a). Thus, further improving 

the accuracy of SCA predictability using the stacking ensemble 

learning paradigm and its application to river ice forecasting 

are desired. 

The purpose of this study is to develop a method of en-

semble learning enhanced stepwise cluster analysis or SCA 

ensemble (SCAE) and to apply it to river ice breakup date fore- 

casting. It will entail: (i) the SCA with multiple inputs will be 

developed and selected as base models according to different 

performance criteria; (ii) the outputs of several SCA base mod- 

els will be combined as inputs of the SCA ensemble models; 

and (iii) the proposed SCAE will be applied to a representative 

site in an unregulated river in Alberta, Canada, where frequent 

ice-caused flooding is a concern. This study would benefit ope- 

rational river-ice related flooding management though demon- 

stration of improving the SCA models based on the stacking 

ensemble learning paradigm. 

2. Methods 

2.1. Stepwise Cluster Analysis (SCA) 

The SCA has the potential to be developed as a forecasting 

model for river ice break-up dates. From the perspective of 

SCA, the whole or part of the training set is a single cluster (α), 

including nα samples, m independent variables (X), and one de- 

pendent variable (Y). The cluster α can be cut into two sub-

clusters β and γ (with nβ and nγ samples, respectively). Based 

on the Wilks’ likelihood-ratio criterion, the cutting point is op- 

timal only if the value of Wilks’ Λ is minimum (Wilks, 1962). In 

the sense of Wilk’s likelihood-ratio criterion, the smaller the Λ 

value, the larger the difference between the sample means of β 

and γ. Because the Λ is directly associated with the F statistic 

(Rao, 1952), the sample averages of the two sub-clusters can 

be evaluated for significant differences through the F test. Thus, 

the criteria of cutting (or merging or not) clusters are trans- 

formed to making a set of F tests (Rao, 1965; Tatsuoka, 1971). 

All sub-clusters derived from the original cluster (α) will enter 

a set of iterative runs of cutting (or merging) processes until 

either all hypotheses of further cut (or mergence) operations are 

rejected or the minimum number of samples (Nmin) within every 

cluster is satisfied. Once all calculations and tests are completed, 

a SCA tree can be generated which indicates the training is over. 

The SCA is more similar to a model tree, such as a CART 
regression tree model (Breiman et al., 1984), instead of clustering 

algorithms, since the dependent variable (predicted value of 

interest) should be provided. The final structure of SCA is simi- 

lar to that a regression tree but with more statistical meanings. 

The value of the dependent variable at each leaf node is based 

on a series of splitting rules of independent variables at the 

branching nodes (De'ath and Fabricius, 2000; Erdal and Kara- 

kurt, 2013; Galelli and Castelletti, 2013). These rules in SCA 

are based on the Wilk’s likelihood-ratio criterion, which is dif- 

ferent from the total residual sum square estimation used in the 

CART. Once the structure of SCA is calibrated by the training 

set, the values of the independent variables of new samples will 

be used to determine which leaf node a sample enters. When 

entering the tree, a new sample (x1, x2, …, xm, y1; y1 is unknown) 

will finally drop into a leaf cluster which can be neither cut nor 

merged further. The routes from top to bottom are decided by a 

comparison between new independent variables (x1, x2, …, xm) 

and the corresponding threshold at each branching node. The 

predicted value of y1 will be the average of dependent variables 

of the training samples in the leaf cluster. Thus, the SCA tree is 

able to predict new dependent variables once new samples en- 

ter the tree. A more detailed description of SCA can be referred 

to the previous work (Qin et al., 2007). An open-source R pack- 

age (rSCA) is developed for stepwise cluster analysis, which is 

available without charge at http://cran. rproject.org/package = 

rSCA (Wang et al., 2015). 

 

2.2. SCA Ensemble 

Ensemble learning is a machine learning paradigm which 

combines multiple learners to solve the same problem (Diet-

terich, 2000). These learners in an ensemble are usually called 

base learners (models). The generalization ability of an ensem- 

ble is usually better than that of a single learner, as long as two 

necessary conditions of base learners are satisfied: accuracy 

and diversity. In other words, base learners with more diversity 

and better accuracy will be beneficial to the performance im- 

provement of the ensemble learning (Polikar, 2006; Wang et 

al., 2011). As one of popular ensemble learning methods, stack- 

ing involves a higher-level (metalevel) learner (combining mod- 

el) to combine lower-level (base-level) learners (base model) 

to achieve greater predictive performance (Wolpert, 1992; Ting 

and Witten, 1999). In this sense, stacking is similar to the mul- 

tiple model combination method (Sun and Trevor, 2018a). Al- 

though stacking is usually employed to combine different-type 

base learners built by multiple learning algorithms, it can be 

used to combine same-type base learners with different struc- 

tures or calibrated parameters as well.  

In this study, the SCAE for annual river ice breakup dates has 

a two-level structure, which includes base and combining mod- 

els (Figure 1). In terms of its functions, the base models link 

the BDs with their corresponding indicators; the combining 

models build the relations between the predicted BDs by each 

base model and the observed BDs. Since the inputs represent 

different information to be used in the models, the SCA models 

with different inputs can be developed as base models with per- 

formance diversity and proper accuracy. The simple average 

method (SAM) is selected as the combining model since it is 

widely used with demonstrated performance improvement and 
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simplicity for implementation. 
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Figure 1. Flowchart of the SCAE model. 
 

2.3. Model Development 

To determine the structure of a stacking ensemble model, 

the first step is to develop the set of base-level learners though 

applying proper learning algorithms based on the original data- 

set or its subsets; The second step of stacking is to collect both 

the output of each base learner and the output in the original 

dataset, and then combine them into a new dataset. In other 

words, the output of each base learner will be the inputs in the 

new dataset while the output is the same. The final step is to 

construct the meta-level learners using the new dataset.  

Since most of the prediction models can often encounter 

the over-fitting problem, separate verification of the validation 

set can help maintain the generality of the calibrated models. In 

addition, considering the river ice data set is scarce, the leave-

one-out cross validation (LOOCV) is accordingly employed to 

evaluate the generality of the proposed SCA base models. For 

the data set with m samples, each SCA base model is calibrated 

with m - 1 samples and validated with 1 sample reserved for 

each run of LOOCV. The implementation of all m runs ensures 

all samples be selected in the validation sets once. Similarly, 

the output of select SCA base models is employed as the inputs 

of the SAM models The SAM model will be calibrated and 

validated by the LOOCV as well. 

To evaluate the predictive performance of the proposed 

member and combining models for river ice break-up dates, 

two performance indices (correlation coefficient (R) and root 

mean squared error (RMSE)) were selected. The model’s perfor- 

mance becomes better with higher R (closer to one) and lower 

RMSE (closer to zero). The evaluation indices are expressed as 

follows: 
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where n is the sample number in the training or validation set, 

Yj and Ysj are the observed and predicted BDs in the jth sample, 

respectively; and Y and sY are the mean of the observed and 

predicted BDs. In LOOCV, these evaluation indices base on 

multiple training and validation sets will be averaged to reflect 

the overall performance of the proposed SCAE methods. 

3. Application 

The study area is located at the confluence between the 

Athabasca and Clearwater Rivers in the town of Fort Mc- 

Murray in Alberta, Canada (Figure 2). The Athabasca River, 

with its basin covering 95,300 km2, is the largest unregulated 

river in Alberta. It originates in the Columbia Ice Fields and 

flows 1,231 km across central and northern Alberta before dis- 

charging into the Peace-Athabasca delta. Fort Mc-Murray is 

located approximately 900 river kilometers downstream of the 

Athabasca River’s glacial headwaters. The about 200 km reach 

upstream of Fort Mc-Murray is characterized by numerous 

rapids and bed discontinuities (Kowalczyk and Hicks, 2003; 

Sun et al., 2015). When river ice breakup occurs, a cascade of 

small ice jams or ice accumulations in this reach may release 

and progress downstream. In the 2.5 km reach downstream of 

the Grant MacEwan Bridge in Fort McMurray, the river widens 

and forms numerous islands and bars, while the river slope de- 

creases by an order of magnitude (She et al., 2009; Andrishak 

and Hicks, 2011). Additionally, the Clear-water River discharges 

into the Athabasca River at this location. These factors may 

result in possible ice jam formation during river ice breakup, 

which increases the flooding risk in the town. 

The historical BDs at this location from 1980 to 2015 was 

collected from the official website of Regional Municipality of 

Wood Buffalo (http://www.rmwb.ca/). These break-up dates 

are actually the last date during the breakup process, which 
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Figure 2. The Athabasca River at Fort McMurray in Alberta, Canada. 

 

implies open channel conditions or minimal ice-related flooding 

risks at the town. This definition is more meaningful in the 

viewpoint of emergency management in response to the lasting 

flooding potential near to and during breakup. Although this 

definition is used in this study, the first date of breakup pro- 

cesses (i.e. the first significant movement of ice cover) would 

be another definition elsewhere (Zhao et al., 2010). Figure 3 

shows the distribution of the BDs, which ranges from early 

April (Julian day: 100) to early May (123). The approximate 

linear pattern indicates that the BDs follow a normal distribu- 

tion, which is assumed and required in the SCA model. The 

potential weather and river indicators corresponding to BDs are 

employed as the model inputs. The weather indicators are em- 

ployed based on monthly statistics for daily maximum, mini- 

mum and average temperatures of two Environment Canada 

stations at Fort Mc-Murray (WMO ID: 71689 and 71585); the 

missing data at station 71689 were complemented by the data 

from station 71585. The river indicators are based on water 

flows at the Water Survey Canada gauge of Athabasca River 

below McMurray (Station 07DA001).  

4. Results Analysis 

4.1. Selection of Indicators Affecting BDs 

Many factors affecting river ice break-up dates include 

spring surface air temperatures and downstream/upstream river 

ice conditions (Bieniek et al., 2011; Beltaos and Burrell, 2015; 

Cooley and Pavelsky, 2016). These indicators are prescreened 

as the candidate inputs (independent variables) of the models 

based on two criteria: both availability before river ice breakup 

and linear correlation coefficients with BDs. It is noted that al- 

though the correlation should be nonlinear in nature, the linear 

correlation coefficients are still helpful to narrow down the 

range of these indicators. The select candidate climate and river 

flow indicators corresponding to BDs are listed in Table 1. 

Among the input variables, X1 to X9 are indicators associated 

with monthly characteristics of daily temperatures at Fort Mc- 

Murray in last fall or this winter. X10 to X17 are indicators related 

to daily water flow at Athabasca River below Mc-Murray dur- 

ing different periods. Notably, the number of those temperature 

and water flow indicators in March has the maximum values 

which indicate the weather and river conditions just before 

breakup may have significant effects on the breakup timing. 

 

4.2. SCA Base Models with the Best Validation Performance 

(Criterion 1) 

The performance of SCA base models depends on adjust- 

ment of several factors, which include data quality, combina- 

tion of input variables, internal configuration parameters (e.g. 

αcut, αmerge and Nmin), and the data partition strategy. The criteria 

for cluster analysis are: cutting cluster when p ≤ αcut and merg- 

ing clusters when p ≥ αmerge, where the p values are significance 

levels of F-test. Generally, higher αcut (a decreased strictness in 

the cutting) would result in lower F1 level (more cutting opera- 

tions). Similarly, higher αmerge (reduced strictness of mergence) 

would result in higher F2 level (more merging operations). The 

Nmin also affects the scales of the cluster trees since it is used as 

one of the ending criteria for training the tree. To identify the 

optimal structure, multiple combinations of inputs and parame- 

ters were testified through the greedy search-based LOOCV 

method. Based on this method, the maximum number of inputs 

was searched from 2 to 6; the αcut was searched from 0.01 to 

0.05; the αmerge was searched from αcut to 0.05; and the Nmin was 

searched from 2, 5 and 10. Table 2 lists the representative SCA 

base models with the best validation performance. All of SCA 

models have good and diverse performances with different 

combinations of inputs and internal parameters. In terms of 

validation performance, the SCA7 with 5 inputs has the lowest 
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Figure 3. Flowchart of the SCAE model. 

 

 
 

Figure 4. Validation performance comparison of optimal SCA base and ensemble models. 

 

RMSEavg, which is considered the optimal SCA base model 

with the best validation performance. Compared with other base 

models, the number of inputs in SCA7 is in the middle range. It 

implies that an optimal combination of inputs may result in bet- 

ter validation performance and structures of the SCA trees. 

 

4.3. SCA Base Models with Better Training and Validation 

Performance (Criterion 2)  

Table 3 lists representative SCA base models with better 

training and validation performance when the inputs are set 

from 2 to 7. The base models with diverse performance are se- 

lected for the ensemble framework. For the training perfor- 

mance, the indices (Ravg and RMSEavg) for the models in Table 

3 range from 0.8284 to 0.9579 and from 1.435 to 2.882, respec- 

tively. These indices in Table 3 are larger and lower than those 

in Table 2 ([0.6317, 0.8983], [2.253, 4.003]), respecttively. In 

terms of validation performance, the ranges of RMSEavg for the 

models in Table 3 ([4.434, 4.877]) are slightly worse than those 

in Table 2 ([4.285, 4.534]). As for structure, the SCA base mod- 

els tend to have higher αcut and αmerge and lower Nmin, which im- 

plies more cutting and merging operations during the training 

process. Additionally, the models with more number of inputs 

tend to have better training performance. It implies that more 

complex structures do increase the fitting ability of these 

models. In contrary, the models in Table 3 with a middle range 

of inputs (3 and 4) tend to have better validation performance. 

It indicates that a balanced structure may be more beneficial to 

the generality of these models. 

 

4.4. SCA Ensemble Models 

Table 4 shows representative ensemble models with higher 

performance. These SCA base models are selected with two dif- 

ferent criteria (i.e. best validation performance vs. better train- 

ing and validation performance). The outputs of these base mod- 

els (y1 to y18) are used as candidate inputs for the ensemble 

models (SAM). The performance was evaluated through search- 

ing all possible combinations of these base models when the 

input number of the SAM is set from 2 to 5. Through compa- 

ring the performance indices, most of these ensemble models 

generally improve upon the base models in terms of the training 

performance. The Ravg for most of ensemble models are greater 

than 0.96 while their RMSEavg are less than 1.6. It is not sur- 

prised since the ensemble models include more base models so 

that the overall structure complexity increases. As for the vali- 

dation performance, the RMSEavg for all of ensemble models are 

less than 3.50 which is an obvious improvement since the 

RMSEavg for all SCA base models are greater than 4.28. It is 
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also noted that enSAM3 (3 base models) to enSAM8 (5 base 

models) have very similar performance, which indicates the 

improvement robustness of this stacking ensemble learning 

paradigm. Among all ensemble models, the enSAM5 (4 inputs: 

y5, y12, y15 and y17) has the lowest RMSEavg (3.200) for valida- 

tion and very similar Ravg (0.9643) and RMSE (1.464) for 

training to other ensemble models. Since it also has a middle 

range of structure (4 inputs), the enSAM5 is considered the opti- 

mal stacking ensemble model. 

 

4.5. Comparison between the Optimal SCA Base and En- 

semble Models 

Figure 4 shows the validation performance comparison 

between the optimal SCA base and ensemble models to further  

 

illustrate their ability to predict new samples. The scattered 

points for the enSAM5 (ensemble model) are generally more 

aggregated than those for the SCA7 (base model); the difference 

between the predicted BDs of the SCA7 and the observed BDs 

is relatively larger in different ranges than those of the 

enSAM5; the RMSEavg for the enSAM5 (3.200) is much lower 

than that of the SCA7 (4.285). The differences in scatter plots 

and performance indices clearly indicate that the former has 

better validation performance than the latter. In detail, for mid- 

range predictions, the advantages of the enSAM5 over the SCA7 

are even more noticeable. For the prediction of higher and low- 

er ranges, both enSAM5 and SCA7 have presented a certain de- 

gree of underestimation and overestimation, respectively. The 

possible reason for the rela tively worse performance of the  

 

Table 1. Candidate Climate and River Flow Indicators 

X X1 X2 X3 X4 X5 X6 X7 X8 X9 

Variable T  T T T T T T T T 

Monthly  Max Max Min Avg Max Min Max Min Min 

Daily Avg Avg Avg Min Min Min Max Max Max 

Period Mar Last Dec Last Nov Mar Mar Mar Mar Mar Last Dec 

Unit °C °C °C °C °C °C °C °C °C 

X X10 X11 X12 X13 X14 X15 X16 X17  

Variable WL WL WL WL WL WL WL WL  

Monthly  Avg Avg Avg Max Max Min Min Min  

Daily Avg Avg Avg Avg Avg Avg Avg Avg  

Period Jan Mar Last Nov Mar Last Sept Mar Last Sept Last Nov  

Unit m3/s m3/s m3/s m3/s m3/s m3/s m3/s m3/s  

* T means temperature and WL means water flow 

 

Table 2. Representative SCA Base Models with the Best Validation Performance 

Model Inputs α-cut α-merge Nmin Output 
Training 

Ravg          RMSEavg 

Validation  

RMSEavg 

SCA1 x10, x15 0.03 0.05 10 y1 0.744  3.444  4.466  

SCA2 x9, x10 0.01 0.01 10 y2 0.632  4.003  4.534  

SCA3 x1, x10, x15 0.03 0.04 2 y3 0.746  3.434  4.409  

SCA4 x4, x10, x15 0.04 0.04 10 y4 0.827  2.901  4.454  

SCA5 x2, x10, x11, x15 0.04 0.05 2 y5 0.883  2.399  4.318  

SCA6 x6, x10, x11, x15 0.05 0.05 5 y6 0.898  2.253  4.364  

SCA7 x2, x4, x10, x11, x15 0.03 0.03 10 y7 0.819  2.971  4.285  

SCA8 x1, x2, x4, x10, x15 0.03 0.03 10 y8 0.816  2.998  4.397  

SCA9 x1, x2, x4, x10, x11, x15 0.05 0.05 10 y9 0.845  2.751  4.321  

SCA10 x1, x6, x8, x9, x13, x15 0.01 0.01 2 y10 0.793  3.118  4.469  

 

Table 3. Representative SCA Base Models with Better Training and Validation Performance 

Model Inputs α-cut α-merge Nmin Output 
Training  

Ravg        RMSEavg 

Validation  

RMSEavg 

SCA11 x3, x15 0.04 0.04 5 y11 0.828  2.882  4.795  

SCA12 x6, x10, x15 0.04 0.04 10 y12 0.890  2.348  4.486  

SCA13 x2, x10, x11, x15 0.05 0.05 2 y13 0.912  2.081  4.527  

SCA14 x6, x10, x11, x15 0.03 0.03 5 y14 0.907  2.150  4.434  

SCA15 x1, x2, x5, x11, x16 0.05 0.05 2 y15 0.905  2.163  4.476  

SCA16 x1, x2, x6, x10, x11, x15 0.05 0.05 2 y16 0.912  2.068  4.687  

SCA17 x1, x2, x6, x8, x13, x15 0.05 0.05 2 y17 0.951  1.551  4.795  

SCA18 x1, x8, x11, x12, x13, x15 0.05 0.05 2 y18 0.958  1.435  4.877  
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Table 4. Representative SCA Ensemble Models 

Model Inputs Output 
Training 

Ravg          RMSEavg 

Validation  

RMSEavg 

enSAM1 y12, y15 Y1 0.939  1.826  3.405  

enSAM2 y15, y17 Y2 0.964  1.402  3.495  

enSAM3 y5, y15, y17 Y3 0.965  1.431  3.237  

enSAM4 y12, y15, y17 Y4 0.967  1.414  3.238  

enSAM5* y5, y12,y15, y17 Y5 0.964  1.464  3.200  

enSAM6 y5, y15, y16, y17 Y6 0.966  1.405  3.211  

enSAM7 y5, y9, y12,y15, y17 Y7 0.961  1.561  3.279  

enSAM8 y5, y12, y14, y15, y17 Y8 0.960  1.583  3.283  

* represents the optimal ensemble model of all models 

 

SCA base model is because the difference within leaf nodes is 

not handled well, besides the complicated river ice breakup 

mechanism. 
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Figure 5. Structure of optimal SCA base model calibrated 

with all data. 

 

Figure 5 presents the tree structure of the optimal SCA 

base model (SCA7). Although the SCA7 has five inputs (x2, x4, 

x10, x11, and x15) based on the LOOCV, its final structure cali- 

brated by all years of data only has 3 inputs (x4, x10, and x15). 

Based on the resulting tree, the BD can be predicted given the 

inputs of tem- perature and water flow conditions. For example, 

let x4 = 273 (m3/s), x10 = -0.7 (°C), and x15 = 14.0 (°C) as new 

inputs. To predict the BD, we have: x15 > 12.70 (°C) for the first 

branch knot so that the sample enters cluster 3 (Figure 5); x10 > 

-4.40 (°C), so that it enters cluster 7 and merges into cluster 8; 

x4 > 178.00 (m3/s), so that it enters cluster 10 and then merges 

into cluster 11; x15 < 14.20 (°C), so that it enters cluster 12; x4 

≥ 273 (m3/s) so that it enters cluster 15 and finally merges into 

cluster 16 with a prediction value of 111.00 ± 4.5 (Julian Day). 

Based on previous SCA studies, the inputs at topper layers have 

more effects on the output (Sun et al., 2009). Thus, the top 

branch node is the maximum daily temperatures in March (x15), 

which implies that the temperatures before breakup do affect 

the BD to a large extent. The x10 (the maximum of daily average 

temperatures in last December) at the second top layer indicates 

the temperatures just after freeze-up have certain effects on the 

BD as well. Finally, the maximum of water flow in March (x4) 

is also an important indicator of BD. 

Figure 6 illustrates the tree structures of four SCA base 

models (SCA5, SCA12, SCA15, and SCA17) within the optimal 

SCA ensemble model (enSAM5). Noticeably, these four SCA 

base models have more layers than the optimal SCA base mod- 

el (SCA7). Compared with the 3 inputs in the SCA7, the SCA5, 

SCA12, SCA15, SCA17 have four (x2, x10, x11, and x15), three (x6, 

x10, and x15), five (x1, x2, x5, x11, and x16), and five (x1, x6, x8, x13, 

and x15; x2 is not included in the final structure) inputs, respec- 

tively. Among these four models, only SCA5 has the same selec- 

tion criteria as SCA7 since both of them belong to representa- 

tive base models with the best validation performance (criteri- 

on 1); the other models (SCA12, SCA15, and SCA17) are selected 

due to better training and validation performance (criterion 2). 

Although the validation performance of SCA7 is the optimal, 

the training performance of four base models is better. The Ravg 

of four base models ranges from 0.8831 to 0.9509 while the 

RMSEavg ranges from 1.551 to 2.399. This indicates that both 

selection criteria do provide more suitable base models with 

diverse performance to the framework of the ensemble model 

and further improve the overall performance.  

5. Discussion 

Several types of data-driven models have been applied to 

BD forecasting. The methods developed in the early stages, 

such as indicators, correlation, and empirical equations, are dif- 

ficult to transfer to other sites with different river ice regime 

(Guo, 2002; Gao et al., 2012). The multiple linear regression 

method is often not appropriate since the linear assumption can 

hardly be met in river ice forecasting problems. Artificial neu- 

ral networks (ANNs) and support vector machines (SVMs) are 

well-accepted tools to quantify the complicated nonlinear river 

ice breakup relations (Wang et al., 2008; Zhou et al., 2009; 

Zhao et al., 2012), although these black-box models are rela- 

tively difficult to explicitly explain and no statistical meanings 

can be provided. Compared with these methods, the SCA can 

establish a nonlinear relation between weather/river indicators 

and breakup dates, provide significance levels in the cutting or 

merging steps to control prediction accuracy, and generate the 
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Fgure 6. Structure of optimal SCA ensemble models. 

 

clustering tree structure describing the inherent logic explicitly. 

However, the SCA does have some limitations. Firstly, the 

original version of SCA can only be applied to the problem 

where the dependent variables (output) are normally distributed 

(Huang, 1992). If it is not the case, the output should be trans- 

formed to a variable with a normal distribution so that the cut- 

ting and merging process can be effectively handled based on 

the Wilk’s statistic. This transformation should be two-direc- 

tional so that the transformed variable can be processed back to 

the original output of the SCA model in the final stage. If the 

output or its transformed form cannot fit the normal distribu- 

tion, the original version of SCA is not recommended for de- 

scribing the relation. In this case, other statistics for cutting and 

merging operations should be introduced to handle the specific 
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distribution of the output. Secondly, the training for a SCA model 

involves a set of iterative runs of cutting (or merging) steps to 

search for all possible clustering possibilities as well as sorting 

operations according to multiple independent variables. This 

calculation process is relatively intensive even for a small data 

set. The implementtation algorithm of the SCA can be opti- 

mized based on careful designs to improve the calculation 

efficiency. Thirdly, similar to other regression tree models, the 

SCA cannot distinguish the difference within the leaf node. 

Fortunately, some algorithms have been developed to build a 

cluster-wise model for each leaf node (He et al., 2008a), which 

is similar to the M5 model (Quinlan, 1992; Wang and Witten, 

1997). Finally, the SCA has a certain ability to filter irrelevant 

inputs during the training. Overloaded inputs may bring diffi- 

culty to the SCA training. Some pre-/post-processing methods 

or searching algorithms (e.g. genetic algorithm) can also be com- 

bined with the SCA to improve its performance (Sun et al., 

2011). 

Considering the advantages and limitations of the SCA, 

the proposed ensemble learning framework (the SCAE) pro-

vides an innovate manner to enhance the SCA’s ability for fore- 

casting river ice BD through combining multiple SCA models. 

The SCAE is promising based on the demonstrated predictive 

performance improvement over the optimal SCA base model. 

However, the performance improvement is associated with an 

increase of the overall structure complexity (Sun and Trevor, 

2018b). Introduction of multiple base models may somehow 

bring difficulties in revealing breakup mechanisms since di- 

verse tree structure based explanations may exist (Sun, 2018). 

In terms of the ensemble type, the proposed framework of the 

SCAE can be categorized as a stacking ensemble. In the future, 

many other types of ensemble manners, including boosting and 

bagging (Anctil and Lauzon, 2004; Zaier et al., 2010), can be 

further applied to the SCA so that the forecasting performance 

is expected to be further improved. It is also worthy pointing 

out that the ensemble learning enhanced SCA has the general 

applicability to various prediction or forecasting problems. 

6. Conclusions 

A method of SCA ensemble (SCAE) is developed and 

applied to forecasting of annual river ice breakup dates (BDs). 

The SCA is employed as base models at the lower level while 

the simple average method (SAM) is selected as combining 

models at the upper level. Within the two-level structure of the 

SCAE, the fitting and generality ability of the SCA can be en- 

hanced by the ensemble learning paradigm. The Athabasca 

River at Fort Mc-Murray in Alberta, Canada is selected as the 

study area, where frequently occurring ice jams are a concern. 

The historical breakup data in 1980 ~ 2015 was employed to 

evaluate the performance of the proposed SCAE. The results 

mainly show that:(1) the SCA base models with multiple com- 

binations of inputs and internal parameters are able to predict 

the BDs with good and different performances; (2) the optimal 

SCA base model has three inputs, which indicates that the tem- 

peratures before breakup and just after freeze-up as well as the 

maximum of water flow in March are relatively important indi- 

cators of BD; (3) several SCA base models selected with two 

criteria, i.e. the best validation performance (criterion 1) versus 

better training and validation performance (criterion 2), are 

searched for further combination. The models using criterion 2 

tend to have more cutting and merging operations during the 

training process than those with criterion 1; (4) most of the en- 

semble models based on the SAM improve upon the base mod- 

els in terms of both training and validation performance; The 

optimal stacking ensemble model (enSAM5) has the lowest 

RMSEavg, which improves upon the optimal SCA base model 

SCA7 by 25.3 %, (5) the enSAM5 is the average output from 

four SCA base models, where one base model belongs to crite- 

rion 1 and the other three base model belong to criteria 2. It in- 

dicates the different model selection criteria do improve the di- 

versity and thus further help to improve the performance of en- 

semble models. This first application of the SCAE to river ice 

forecasting highlights the possibility of using the ensemble 

learning paradigm to enhance the SCA’s predictive perfor- 

mance. The potential applications of the SCAE to other fore- 

casting problems are expected. 

 

Competing interests. The authors declare that they have no conflict 

of interest. 

Acknowledgements. This research was supported by the National Key 

Research and Development Plan (2016YFA0601502), National Natural 

Science Foundation of China (61601522), and the Hundred Talents 

Program of Sun YatSen University. The first author would like to 

acknowledge the support of his previous colleagues at River Forecast 

Center of Alberta Environment and Parks: Bernard Trevor, Nadia Ko- 

vachis Watson, Stefan Emmer, Patricia Stevenson, Evan Friesenhan, 

Andun Jevne and Chandra Mahabir. 

References 

Anctil, F. and Lauzon, N. (2004). Generalisation for neural networks 

through data sampling and training procedures, with applications to 

streamflow predictions. Hydrology and Earth System Sciences, 8(5), 

940-958. https://doi.org/10.5194/hess-8-940-2004 

Andrishak, R. and Hicks, F. (2011). Ice effects on flow distributions 

within the Athabasca Delta, Canada. River Research and Appli- 

cations, 27(9), 1149-1158. https://doi.org/10.1002/rra.1414 

Beltaos, S. (2000). Advances in river ice hydrology. Hydrological 

Processes, 14(9), 1613-1625. https://doi.org/10.1002/1099-1085 

(20000630)14:9<1613:AID-HYP73>3.0.CO;2-V 

Beltaos, S. and Burrell, B. (2015). Hydrotechnical advances in 

Canadian river ice science and engineering during the past 35 years 

Canadian. Journal of Civil Engineering, 42(9), 583-591. https:// 

doi.org/10.1139/cjce-2014-0540 

Beltaos, S. and Prowse, T. (2009). River-ice hydrology in a shrin- king 

cryosphere. Hydrological Processes, 23(1), 122-144. https://doi.org 

/10.1002/hyp.7165 

Bieniek, P.A. and Bhatt, U.S. (2011). Large-scale climate con- trols of 

interior Alaska river ice breakup. Journal of Climate, 24(1), 286-

297. https://doi.org/10.1175/20 10JCLI3809.1 

Breiman, L., Friedman, J., Stone, C.J., and Olshen, R.A. (1984). Cla- 

ssification and regression trees. CRC press. 

Cheng, G., Dong, C., Huang, G., Baetz, B.W., and Han, J. (2016). 

Discrete principal-monotonicity inference for hydro-system ana- 

lysis under irregular nonlinearities, data uncertainties, and multi- 

variate dependencies. Part I: methodology development. Hydrolo- 

gical Processes, 30(23), 4255-4272. https://doi.org/10.1002/hyp. 

https://doi.org/


W. Sun et al. / Journal of Environmental Informatics Letters 1(1) 37-47 (2019) 

46 

 

10909 

Cooley, S.W. and Pavelsky, T.M. (2016). Spatial and temporal patterns 

in Arctic river ice breakup revealed by automated ice detection from 

MODIS imagery. Remote Sensing of Environment, 175, 310-322. 

https://doi.org/10.1016/j.rse.2016.01.004 

De'ath, G. and Fabricius, K.E. (2000). Classification and regression 

trees: a powerful yet simple technique for ecological data analysis. 

Ecology, 81(11), 3178-3192. https://doi.org/10.1890/0012-9658(2 

000)081[3178:CARTAP]2.0.CO;2 

Dietterich, T.G. (2000). Ensemble methods in machine learning. In: 

Kittler, J., Roli, F., Multiple Classifier Systems. Lecture Notes in 

Computer Science, pp. 1-15. https://doi.org/10.1007/3-540-45014-

9_1 

Erdal, H.I. and Karakurt, O. (2013). Advancing monthly streamflow 

prediction accuracy of CART models using ensemble learning 

paradigms. Journal of Hydrology, 477, 119-128. https://doi.org/ 

10.1016/j.jhydrol.2012.11.015 

Fan, Y.R., Huang, G.H., Li, Y.P., Wang, X.Q., Li, Z., and Jin, L. (2017). 

Development of PCA-based cluster quantile regression (PCA-CQR) 

framework for streamflow prediction: Application to the Xiangxi 

River Watershed, China. Applied Soft Computing, 51, 280-293. 

https://doi.org/10.1016/j.asoc.2016.11.039 

Fan, Y.R., Huang, W., Huang, G.H., Li, Z., Li, Y.P., Wang, X.Q., Cheng, 

G.H., and Jin, L. (2015). A stepwise-cluster forecasting approach 

for monthly streamflows based on climate teleconnections. Stochas- 

tic Environmental Research and Risk Assessment, 29(6), 1557-1569. 

https://doi.org/10.1007/s00477-015-1048-y 

Galelli, S. and Castelletti, A. (2013). Assessing the predictive capabili- 

ty of randomized tree-based ensembles in streamflow modelling. 

Hydrology and Earth System Sciences, 17(7), 2669-2684. https:// 

doi.org/10.5194/hess-17-2669-2013 

Gao, G., Yu, G., Wang, Z., and Li, S. (2012). Advances in Break-up 

Date Forecasting Model Research in the Ningxia- Inner Mongolia 

Reach of the Yellow River, 21st IAHR International Symposium on 

Ice. Dalian University of Technology Press, Dalian, China. 

Guo, Q.Z. (2002). Applicability of criterion for onset of river ice 

breakup. Journal of Hydraulic Engineering-Asce, 128(11), 1023-

1026. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(102 

3) 

Han, J.C., Huang, Y.F., Li, Z., Zhao, C.H., Cheng, G.H., and Huang. 

P.F. (2016). Groundwater level prediction using a SOM-aided step- 

wise cluster inference model. Journal of Environmental Manage- 

ment, 182, 308-321. https://doi.org/10.1016/j.jenvman.2016.07.069 

He, L., Huang, G.H., and Lu, H.W. (2008a). Health-risk-based ground- 

water remediation system optimization through clusterwise linear 

regression. Environmental Science & Technology, 42(24), 9237-

9243. https://doi.org/10.1021/es800834x 

He, L., Huang, G.H., Lu, H.W., and Zeng, G.M. (2008b). Optimization 

of surfactant-enhanced aquifer remediation for a laboratory BTEX 

system under parameter uncertainty. Environmental Science & 

Technology, 42(6), 2009-2014. https://doi.org /10.1021/es071106y 

Hicks, F. (2009). An overview of river ice problems: CRIPE07 guest 

editorial. Cold Regions Science and Technology, 55(2), 175-185. 

https://doi.org/10.1016/j.coldregions.2008.09.006 

Huang, G.H. (1992). A stepwise cluster-analysis method for predicting 

air-quality in an urban-environment. Atmospheric Environment Part 

B-Urban Atmosphere, 26(3), 349-357. https://doi.org/10.1016/0957 

-1272(92)90010-P 

Huang, G.H., Huang, Y.F., Wang, G.Q., and Xiao, H.N. (2006). Deve- 

lopment of a forecasting system for supporting reme- diation design 

and process control based on NAPL - biodegradation simulation and 

stepwise-cluster analysis. Water Resources Research, 42(6). https:// 

doi.org/10.1029/2005WR004006 

Kowalczyk, T. and Hicks, F. (2003). Observations of dynamic ice jam 

release on the Athabasca River at Fort McMurray, AB. Proc. 12th 

Workshop on River Ice, Edmonton, June 19-20. 

Li, Z., Huang, G.H., Han, J.C., and Wang, X.Q. (2015). Development 

of a Stepwise-Clustered Hydrological Inference Model. Journal of 

Hydrologic Engineering, 20(10). https://doi.org/10.1061/(ASCE) 

HE.1943-5584.0001165 

Mahabir, C., Hicks, F., and Fayek, A.R. (2006). Neuro-fuzzy river ice 

breakup forecasting system. Cold Regions Science and Technology, 

46(2), 100-112. https://doi.org/10.1016/j.cold regions.2006.08.009 

Polikar, R. (2006). Ensemble based systems in decision making. IEEE 

Circuits and Systems Magazine, 6(3), 21-44. https://doi.org/10.1109 

/MCAS.2006.1688199 

Qin, X.S., Huang, G.H., and Chakma, A. (2007). A stepwise- 

inference-based optimization system for supporting remediation of 

petroleum-contaminated sites. Water Air and Soil Pollution, 185(1-

4), 349-368. https://doi.org/10.1007/s11270-007-9458-1 

Quinlan, J.R. (1992). Learning with continuous classes, 5th Aus- 

tralian joint conference on artificial intelligence. Singapore, pp. 

343-348. 

Rao, C.R. (1952). Advanced Statistical Methods in Biometric Research, 

Wiley, New York, pp. 106-207. 

Rao, C.R. (1965). Linear Statistical Inference and Its Applications. 

Wiley, New York, pp. 239-301. 

She, Y.T., Andrishak, R., Hicks, F., Morse, B., Stander, E., Krath, C., 

Keller, D., Abarca, N., Nolin, S., Tanekou, F.N., and Mahabir, C. 

(2009). Athabasca River ice jam formation and release events in 

2006 and 2007. Cold Regions Science and Technology, 55(2), 249-

261. https://doi.org/10.1016/j.coldregions.2008.02.004 

Sun, W. (2018). River ice breakup timing prediction through stacking 

multi-type model trees. Science of the Total Environment, 644: 

1190-1200. https://doi.org/10.1016/j.scitotenv.2018.07.001 

Sun, W., Huang, G.H., Zeng, G.M., Qin, X.S., and Sun, X.L. (2009). 

A stepwise-cluster microbial biomass inference model in food waste 

composting. Waste Management, 29(12), 2956-2968. https://doi.org 

/10.1016/j.wasman.2009.06.023 

Sun, W., Huang, G.H., Zeng, G.M., Qin, X.S., and Yu, H. (2011). 

Quantitative effects of composting state variables on C/N ratio 

through GA-aided multivariate analysis. Science of The Total Envi- 

ronment, 409(7), 1243-1254. https://doi.org/10.1016/j.scitotenv. 

2010.12.023 

Sun, W. and Trevor, B. (2017). Combining k-nearest-neighbor models 

for annual peak breakup flow forecasting. Cold Regions Science and 

Technology, 143, 59-69. https://doi.org/10.1016/j.coldregions.2017. 

08.009 

Sun, W. and Trevor, B. (2018a). Multiple Model Combination Meth- 

ods for Annual Maximum Water Level Prediction during River Ice 

Breakup. Hydrological Processes. https://doi.org/10.1002/hyp.11429 

Sun, W. and Trevor, B. (2018b). A stacking ensemble learning frame- 

work for annual river ice breakup dates. Journal of Hydrology, 561, 

636-650. https://doi.org/10.1016/j.jhydrol.2018.04.008 

Sun, W., Trevor, B., and Kovachis, N. (2015). Athabasca River Ice 

Observations 2014-2015 (Annual Report), Alberta Environment 

and Parks Edmonton, Alberta. 

Tatsuoka, M.M. (1971). Multivariate Analysis. Wiley, New York, pp. 

38-197. 

Ting, K.M. and Witten, I.H. (1999). Issues in stacked generalization. 

Journal of Artificial Intelligence Research, 10, 271-289. https://doi. 

org/10.1613/jair.594 

Wang, G., Hao, J., Ma, J., and Jiang, H. (2011). A comparative assess- 

ment of ensemble learning for credit scoring. Expert Systems with 

Applications, 38(1), 223-230. https://doi.org/10.1016/j.eswa.2010. 

06.048 

Wang, S., Huang, G.H., and He, L. (2012). Development of a cluster- 

wise-linear-regression-based forecasting system for characterizing 

DNAPL dissolution behaviors in porous media. Science of the Total 

Environment, 433, 141-150. https://doi.org/10.1016/j.scitotenv.2012. 

06.045 

Wang, T., Yang, K.L., and Guo, Y.X. (2008). Application of artificial 

https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(102
https://doi.org/10.1016/j.scitotenv.%202010
https://doi.org/10.1016/j.scitotenv.%202010
https://doi.org/10.1016/j.coldregions.2017
https://doi.org/10.1002/hyp
https://doi.org/10.1016/j.eswa.2010.%2006.048
https://doi.org/10.1016/j.eswa.2010.%2006.048
https://doi.org/10.1016/j.scitotenv.2012


W. Sun et al. / Journal of Environmental Informatics Letters 1(1) 37-47 (2019) 

 

47 

neural networks to forecasting ice conditions of the Yellow River in 

the Inner Mongolia reach. Journal of Hydrologic Engineering, 13(9), 

811-816. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:9(811) 

Wang, X.Q., Huang, G.H., Lin, Q.G., Nie, X.H., Cheng, G.H., Fan, 

Y.R., Li, Z., Yao, Y., and Suo, M.Q. (2013). A stepwise cluster 

analysis approach for downscaled climate projection - a Canadian 

case study. Environmental Modelling & Software, 49, 141-151. 

https://doi.org/10.1016/j.envsoft.2013.08.006 

Wang, X.Q., Huang, G.H., Zhao, S., and Guo, J.H. (2015). An open-

source software package for multivariate modeling and clustering: 

applications to air quality management. Environmental Science and 

Pollution Research, 22(18), 14220-14233. https://doi.org/10.1007/ 

s11356-015-4664-7 

Wang, Y. and Witten, I.H. (1997). Inducing model trees for continuous 

classes, Proceedings of the Ninth European Conference on Machine 

Learning, pp. 128-137. 

Wilks, S.S. (1962). Mathematical Statistics. Wiley, New York, pp. 20-

209. 

Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5(2), 

241-59. https://doi.org/10.1016/S0893-6080(05)80023-1 

Zaier, I., Shu, C., Ouarda, T.B.M.J., Seidou, O., and Chebana, F. (2010). 

Estimation of ice thickness on lakes using artificial neural network 

ensembles. Journal of Hydrology, 383(3-4), 330-340. https://doi. 

org/10.1016/j.jhydrol.2010.01.006 

Zhai, Y., Huang, G.H., Wang, X.Q., Zhou, X., Lu, C., and Li, Z. (2019). 

Future projections of temperature changes in Ottawa, Canada 

through stepwise clustered downscaling of multiple GCMs under 

RCPs. Climate Dynamics. 52(5), 3455-3470. https://doi.org/10.10 

07/s00382-018-4340-y 

Zhao, L., Hicks, F., Fayek, A.R., and Kovachis, N. (2010). Forecasting 

the Onset of Breakup using Artificial Neural Networks, 20th IAHR 

International Symposium on Ice. 

Zhao, L., Hicks, F.E., and Robinson Fayek, A. (2012). Applicability of 

multilayer feed-forward neural networks to model the onset of river 

breakup. Cold Regions Science and Technology, (70), 32-42. https: 

//doi.org/10.1016/j.coldregions.2011.08.011 

Zhao, S., Huang, G.H., Cheng, G.H., Sun, W., Su, Q., Tao, Z.Y., and 

Wang, S.G. (2017). A Stepwise-Cluster Inference Model for Phe- 

nanthrene Immobilization at the Aqueous/Modified Palygorskite 

Interface. Water, 9(8). https://doi.org/10.3390/w9080590 

Zhou, H., Li, W., Zhang, C., and Liu, J. (2009). Ice breakup forecast in 

the reach of the Yellow River: the support vector machines approach. 

Hydrology and Earth System Sciences Discussions, 6(2), 3175-3198. 

https://doi.org/10.5194/hessd-6-3175-2009 

Zhuang, X.W., Li, Y.P., Huang, G.H., and Liu, J. (2016a). Assessment 

of climate change impacts on watershed in cold-arid region: an 

integrated multi-GCM-based stochastic weather generator and step- 

wise cluster analysis method. Climate Dynamics, 47(1-2), 191-209. 

https://doi.org/10.1007/s00382-015-2831-7 

Zhuang, X.W., Li, Y.P., Huang, G.H., and Wang, X.Q. (2016b). A 

hybrid factorial stepwise-cluster analysis method for streamflow 

simulation - a case study in northwestern China. Hydrological 

Sciences Journal, 61(15), 2775-2788. https://doi.org/10.1080/0262 

6667.2015.1125482  

 

https://doi.org/10.1007/
https://doi.org/10.1080/

